
American Journal of Sciences and Engineering Research iarjournals.com

14 Received- 10-01-2019, Accepted- 22-02-2019

American Journal of Sciences and Engineering Research

E-ISSN -2348 – 703X, Volume 2, Issue 1, February - 2019

Performance Evaluation of Various Active Queue Management

for Bufferbloat

Kanu Monga
Department of Computer Sciences, Faculty of Engineering, University of Nigeria.

ABSTRACT: Due to unprotected large buffers in network devices, the Internet is suffering from high latency and
jitter which leads to decreased throughput. The perseveringly full buffer problem, recently exposed as
“bufferbloat” [1] [2] has been observed for decades, but is still with us. As a solution to this problem, several
new AQM algorithms CoDel, sfqCoDel and CoDel-DT have been proposed. This paper aims to evaluate these
AQM algorithms by carrying out simulations in ns-2 and compares their performance with that of DropTail.
sfqCoDel outperforms various peer solutions in variety of scenarios in terms of bottleneck link utilization, packet
drop rate and mean queue length.

Index Terms: AQM, RED, CoDel, Droptail, Bufferbloat.

I. INTRODUCTION
Over the past few years, the usage of Internet has grown to phenomenal levels and this has led to heavy
congestion in routers. Due to the rapid price drop of memory, buffering has been overdone in many network
devices which results in problem called buffer bloat. The reason is that TCP congestion control algorithms [1]
depends on packet loss to predict congestion but if the buffers are very large, packets sit in the buffer queues
instead of being dropped, and congestion signal does not reach to the endpoints in a timely manner; meaning
that they do not slow down, and the buffers remain full. Moreover, every new packet that gets in the buffer
has to wait for all packets queued before it to be transmitted before it can go on its way. These two effects join
to create what is referred to as bufferbloat [5][6]. It can cause many applications to time out, and users to
experience huge delays. As a solution to this problem, several AQM mechanisms have been proposed. AQM
limits the buffers from growing by either dropping or by marking a packet i.e. as the queue approaches its
threshold, it alerts TCP sender so that sender can reduce the speed at which packets are sent. The necessity for
AQM algorithms like RED [2], ARED, BLUE etc. has been evident from decades [4] but none has been widely
deployed due to implementation difficulties. Recently, a new AQM mechanism called Controlled Delay (CoDel)
[11] has been proposed to overcome the shortcomings of existing AQMs. Unlike RED [7], CoDel is
parameterless AQM mechanism that adapts to varying link rates and can be easily deployed [11]. It uses packet
sojourn time to predict congestion. It is one of the most simple and efficient AQM algorithm. It helps to fix
BufferBloat problem.

II. CONTROLLED DELAY (CODEL) ALGORITHM
A. Overview

Controlling Delay (CoDel) is a recently proposed Active Queue Management (AQM) scheme developed by
Van Jacobson and Kathleen Nichols [11] to overcome the Bufferbloat problem [12] in the Internet. Unlike
RED,ARED and its variants [8] [9] [10], CoDel works on the the basis of minimum time that packets spend in
the queue. CoDel detects the standing queue and once sojourn time i.e. time spent by packets in queue
remain above predefined threshold (called target) over an entire interval, it sends a congestion signal to TCP
by marking/dropping packets. CoDel requires minimal tuning and can be implemented efficiently on all
networks [13] [14]. It is not based on link utilization, queue size, round trip delay, queue size thresholds etc.

B. Algorithm
CoDel works by adding a timestamp to each packet as it arrives. When the packet reaches the head of the
queue, the time spent in the queue is calculated, if the time spent by a packet within the queue is higher
than a defined threshold(target) for the entire interval, the algorithm sets a timer to drop a packet at
dequeue. This dropping is only done when queue holds at least one MTU’s worth of bytes. Constant used in
CoDel algorithm [13]:

http://iarjournals.com/

American Journal Of Sciences And Engineering Research iarjournals.com

15 Received- 10-01-2019, Accepted- 22-02-2019

• target = acceptable standing queue delay (constant 5ms)
• interval = time on order of worst case RTT of connections through the bottleneck (constant between

10ms to 1sec).

Fig 1: CoDel Algorithm

C. The Stochastic Fair Queue CoDel (sfqCoDel)
The sfqCoDel [15] is a variation of CoDel which drops packets intelligently by proactively dropping the one
which occupies extra bandwidth comparing to the others, thus ensuring fair consumption of bandwidth by
each packet. The goal of fair queuing is to give each distinct user of the network, a fair share of available
bandwidth. Instead of keeping track of all active flows and their share of bandwidth, flows are hashed into a
number of buckets, each of which has its own queue. These queues are offered in a round-robin fashion when
packets are dequeued [16].

D. CoDel-DT
CoDel-DT [17] is a altered version of the "Controlled Delay" (CoDel) AQM. CoDel-DT utilizes a delay prediction
at enqueue time and drop-decision is taken at enqueue. If the prediction of delay is sufficiently accurate, the
performance can be shown similar to CoDel. CoDel-DT is more easily implementable in certain situations.

III. SIMULATION SCENARIO
A. Simulation Setup

Network simulator ns2 [18] is used to run the simulations in order to evaluate the performance of AQM
techniques. New queue objects like CoDel, sfqCoDel, CoDel-DT are added to ns2.
A single bottleneck dumbbell topology with two-way traffic is designed. In this scenario there are two routers
that are n1 and n2 which are connected with bottleneck having a simplex link, which has a capacity of 20Mb
and delay of 4ms. The bottleneck bandwidth is set to 10Mbps with bottleneck round trip delay set to 32ms.
Size of bottleneck buffer is 8xBDP. The traffic consists of five forward-FTP flows, five reverse-FTP flows, five
HTTP flows generated using PackMime generator, five audio flows, five forward- streaming flows and five
reverse-streaming flows.

A. Metrics
The major parameters considered for this study are: link utilization of bottleneck link, queue size of the
bottleneck router and packet drop rate. TCP Reno is used in this analysis.

IV. RESULTS AND ANALYSIS
A. Varying Bottleneck Bandwidth

The bottleneck bandwidth is varied between 1Mbps to 1Gbps, queue size is set to 8xBDP and RTT fixed to

http://iarjournals.com/

American Journal Of Sciences And Engineering Research iarjournals.com

16 Received- 10-01-2019, Accepted- 22-02-2019

32ms. Fig. 2, Fig. 3 and Fig. 4 show the results for bottleneck link utilization, mean queue length at the
bottleneck router and packet drop rate at the bottleneck queue respectively. Favourable characteristic of an
ideal AQM is the one having higher link utilization, least number of packet drops and minimal queue size.
sfqCoDel AQM exhibits the aforesaid characteristics as compared to others.
Fig. 2 shows that there is degradation in bottleneck link utilization for all the queue mechanisms as the
bottleneck bandwidth is increased. This is the expected behaviour of queue mechanisms.
But with sfqCoDel, link utilization remains fairly better. Increase in bottleneck bandwidth, enables the router
to empty its queue more quickly by forwarding the packets through the bottleneck link. Hence the mean
queue length is expected to reduce at higher bottleneck bandwidths. From Fig. 3 it is apparent that sfqCoDel
shows a tremendous improvement in mean queue length at lower bottleneck bandwidths. Initially, DropTail
shows an increase in mean queue length but as the bottleneck bandwidth increases, DropTail also shows
reduction in mean queue length. Packet drop rate is expected to reduce at higher bottleneck bandwidth. Fig.
4 shows that packet drop rate is almost similar for all the queue mechanisms with a slight improvement in
case of CoDel and sfqCoDel.

Fig.2: Bottleneck Link utilization by varying bottleneck bandwidth in TCP Reno

B. Varying the number of FTP Connection:
In this scenario, the numbers of forward FTP-flows are varied from 1 to 1000, the bottleneck bandwidth is
fixed to 10Mbps, the queue limit is fixed to 8xBDP and the RTT is fixed to 32ms. Fig. 5, Fig. 6 and Fig. 7 show
the results for bottleneck link utilization, mean queue length at the bottleneck router and packet drop rate
at the bottleneck queue respectively. When number of forward FTP-flows are less, the bottleneck link
utilization is expected to be low and when number of forward FTP-flows are more, the bottleneck link
utilization is expected to be high because of increase in the traffic load. The bottleneck link utilization
behavior remains almost similar for all three mechanisms except DropTail. With DropTail, link utilization is
severly degraded. When the number of forward FTP-flows are less, the amount of bursts of packets is
expected to be less and hence, the queue occupancy is also expected to be less. As the number of forward
FTP-flows increases, the amount of bursts of packets is expected to increase sharply and hence, the queue
occupancy is also expected to increase sharply. However, the goal of an AQM must be to control the mean
queue length even when the amount of bursts of packets is high. It can be observed from Fig 6 that with
DropTail mean queue length gets increased whereas with CoDel, sfqCoDel and CoDel-DT, the mean queue
length remains almost constant since packets are proactively dropped/marked to provide an early
congestion notification to the sender. Number of packet drop is expected to be low with minimal forward
FTP flows, but as traffic load approaches 5, there is a spike in packet drop rate. Fig. 7 depict the expected
behaviors of DropTail, CoDel, sfqCoDel and CoDel-DT.

http://iarjournals.com/

American Journal Of Sciences And Engineering Research iarjournals.com

17 Received- 10-01-2019, Accepted- 22-02-2019

V. CONCLUSIONS AND FUTURE WORK
Over the past few decades, the usage of Internet has increased at a alarming rate. Nowdays,

network is suffering from poor performance and unnecessary latency also called as bufferbloat

problem. As a solution to this, many Active Queue Management alogorithms have been developed.

This paper compares the performance of these algorithms CoDel, sfqCoDel and CoDel-DT in wide

range of scenarios like varying bottleneck bandwidth, varying number of connections, varying RTT

values. A comparison is also carried out with traditional algorithm i.e. DropTail. Simulation results

show that in almost all scenarios, sfqCoDel outperforms CoDel, CoDel-DT and DropTail in terms of

link utilization, mean queue length and packet drop rate.

The results presented here are supporting, but these are performed using simulations. An in-depth

investigation required to analyse the behaviour of these algorithms on real world networks. Also we

can analyse the behavior of these algorithms on wireless networks. Moreover, interaction of these

AQM algorithms with different TCP congestion control algorithms still needs to be explored.

VI REFERENCES
1. W. S. M. Allman, V. Paxson, “TCP Congestion Control,” April 1999, RFC 2581.
2. S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,” IEEE/ACM

Transactions on Networking, vol. 1, pp. 397–413, August 1993.
3. M. Hassan and R. Jain, “High Performance TCP/IP Networking: Concepts, Issues and Solutions,” 2004, Pearson

Education, Inc.
4. Braden B. et al., “Recommendations on Queue Management and Congestion Avoidance in the Internet,” April

1998, RFC 2309.
5. J. Gettys, “Bufferbloat: Dark Buffers in the Internet,” IEEE Internet Computing Magazine, vol. 15, p. 96, June

2011.
6. “Bufferbloat Project,” 2011. [Online]. Available: http://www.bufferbloat.net
7. S. Floyd, “RED: Discussions of Setting Parameters,” November 1997. [Online].

Available:http://www.icir.org/floyd/REDparameters.txt
8. S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm for Increasing the Robustness of RED’s

Active Queue Management,” Tech. Rep., August 2001.
9. K. Zhou, K. L. Yeung, and V. O. K. Li, “Nonlinear RED: a simple yet efficient Active Queue Management

Scheme,” Computer Networks, vol. 50, pp. 3784–3794, December 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1228646.1228661

10. T. O. Lakshman, T. V. Lakshman, and L. Wong, “SRED: Stabilized RED,” in Proceedings of INFOCOM, 1999, pp.
1346–1355.

11. K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue Magazine: Networks, vol. 10, no. 5, pp.
68–81, May 2012. [Online]. Available: http://queue.acm.org/detail.cfm?id=2209336

12. Jacobson, “Kathie Nichols CoDel,” Vancouver, Canada, July 2012, IETF-84 Transport Area Open Meeting.
13. Dipesh M. Raghuvanshi, B. Annappa, and Mohit P. Tahiliani. ”On the Effectiveness of CoDel for Active Queue

Management.” In Proceedings of Third International Conference on Advanced Computing & Communication
Technologies, ACCT ’13, pages 107-114. IEEE Computer Society, 2013.

14. T. Sharma, “Controlling queue delay (codel) to counter the bufferbloat problem in internet," INPRESSCO
International Journal of Current Engineering and Technology, 2014.

15. Paul E. McKenney and Dave Tht.”SFQ on Steroids” Retrived from
http://snapon.lab.bufferbloat.net/d/lwn/SFQ2012/FQ-Codel.htmlx (January 7, 2013)

http://iarjournals.com/
http://www.bufferbloat.net/
http://www.icir.org/floyd/REDparameters.txt
http://portal.acm.org/citation.cfm?id=1228646.1228661
http://portal.acm.org/citation.cfm?id=1228646.1228661
http://queue.acm.org/detail.cfm?id=2209336
http://snapon.lab.bufferbloat.net/d/lwn/SFQ2012/FQ-Codel.htmlx
http://snapon.lab.bufferbloat.net/d/lwn/SFQ2012/FQ-Codel.htmlx

	Kanu Monga
	ABSTRACT: Due to unprotected large buffers in network devices, the Internet is suffering from high latency and jitter which leads to decreased throughput. The perseveringly full buffer problem, recently exposed as “bufferbloat” [1] [2] has been observ...
	I. INTRODUCTION
	II. CONTROLLED DELAY (CODEL) ALGORITHM
	A. Overview
	B. Algorithm
	Fig 1: CoDel Algorithm
	C. The Stochastic Fair Queue CoDel (sfqCoDel)
	D. CoDel-DT

	III. SIMULATION SCENARIO
	A. Simulation Setup
	A. Metrics

	IV. RESULTS AND ANALYSIS
	A. Varying Bottleneck Bandwidth
	Fig.2: Bottleneck Link utilization by varying bottleneck bandwidth in TCP Reno
	B. Varying the number of FTP Connection:

	V. CONCLUSIONS AND FUTURE WORK
	VI REFERENCES

