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ABSTRACT:In this paper, a new Sixth-Stage Fifth-Order Runge-Kutta Formula was derived and implemented. The 

results obtained, were compared with existing methods in literature, in other to determine the level of performance of 

the method. The consistency and convergence properties of the method were properly investigated. Errors involved in 

the new method and that of   kutta-Nystrom method, were plotted with MATLAB to obtain their trajectories. 
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I. INTRODUCTION  

The solutions of some real life problems can be modeled through the process of differential equations. Such 

differential equations   may not be solved by the use of analytical techniques. If the differential equation is not 

solvable by analytical, then we can resort to numerical methods. Many methods have been proposed and used by 

different authors in an attempt to provide accurate solutions to the various types of differential equations arising 

from the models, Bazuaye [1]. The focus here is to propose a technique that can solve problems in ordinary 

differential equations which arise frequently in several models of mathematical physics, biological Sciences, 

engineering and applied mathematics.  

There are various classes of methods in this direction, such as Taylor series method, Euler method, Block 

method, multi- linear -step method, Runge-Kutta method and many other methods. However, this work will be on 

special types of explicit Runge-Kutta method aimed at providing solutions to Initial Value Problems (IVPs) in ordinary 

differential equations. Although,   various formulae have been developed from  this general Runge-kutta method, such 

as the popular fourth -order Runge-Kutta , fifth- order Runge-Kutta, a cubic Root mean fourth-order Runge-Kutta, 

Geometric mean fourth-order Runge-Kutta method  etc,  Aashikpelokhai and Agbeboh [3], Agbeboh and 

Aashikpelokhai [ 4]. According to Abbas [2], the 4
th

 order explicit Runge-Kutta method has become the most popular 

version of the classical Runge-Kutta method. The fourth-order Runge-Kutta method is now recognized as the starting 

point for the modern one-step methods.Butcher *5+ noted that “Runge-Kutta method provide a suitable way of 

numerical solutions to ordinary differential equations”. Butcher *5+ further revealed that, “Different approaches have 

been used by many authors in the past to derive a method that will minimize the error associated with the use of 

Runge-Kutta method”.  

Agbeboh and Esekhaigbe  *6+ also noted that “…….despite the evolutions of a vast and comprehensive body 

of knowledge, Explicit Runge-Kutta algorithms continue to be sources of active research”. He further noted that 

Runge_-Kutta methods represent an important family of explicit and implicit iterative methods of approximation of 

solution to ordinary differential equations in numerical analysis.  

According to Islam [7], the Runge-Kutta method is most popular because it is quite accurate, stable and easy 

to program. This method is distinguished by their order in the sense that they agree with Taylor’s series solution up to 

terms of     where r is the order of the method. It does not demand prior computation of higher derivatives of      

as in Taylor’s series method. Agbeboh and Omonkaro in [8] also noted that, the philosophy behind the Runge-Kutta 
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methods, is to retain the advantages of one-step methods and to improve on the performance of Euler method. He 

further said due to loss of linearity in the one-step methods, error analysis is considerably more difficult than the case 

of multi- linear step method. Traditionally, Runge-Kutta methods are all explicit method, although, implicit Runge-

Kutta methods have extensively been used to improved weak stability characteristics.    

According to Agbeboh and Ehiemua [9], construction of Runge-Kutta methods need the partial derivative of 

the functions whose parameters are sort by comparing the emerging equations with Taylor series expansion, because 

they involve so many non-linear algebraic expressions   called the "order" conditions.  They further noted that, there is 

a tedious manipulation in the process of deriving Runge-Kutta methods of higher order. He noted that, in deriving a 

fourth order Runge –Kutta method, a system of 11 equations in 13 unknowns are obtained as against 4 equations in 6 

unknown,  in the case of third order methods. This lack of uniqueness is typical of all Runge-Kutta methods. 

Many researchers have done a great deal of work in the area of getting a more suitable method that is 

efficient in handling singular initial value problems in ordinary differential equations with minimum error bound. 

Worthy of note are those of Agbeboh and Esekhaigbe [6], Agbeboh and Ehiemua [9], Lambert [10], Butcher [5] and 

host of others. In their various efforts, they believe that if parameters are carefully varied, the tendency is to have 

method that will possess the potentials of improving results and thereby reducing error.Furthermore, Lambert [10] 

acknowledge that there are many various existing methods for the solutions of initial value problem in ordinary 

differential equation, but not all such methods have the capacity of providing results with high accuracy to these initial 

value problems. For that reason, we were motivated to derive Sixth-Stage Fifth-Order Runge-kutta method that will 

provide solutions with higher accuracy and lower level of error to these initial value problems. However, the 

derivation of fifth-order Runge-Kutta method was introduced by Kutta and advanced by Nystrom as stated in Abbas 

[2]. Therefore, the overall aim of this paper is to developing a numerical method for the solution of the initial value 

problem of the type:    '

0 0( , ) , ( ) , ,                                                                                                               1y f x y y x y x a b    

Where gradient function f(x, y) may have points of discontinuities,  

While the specific objectives are to: 

(a)      deriving  a Sixth-Stage Fifth-Order Runge-Kutta  method with high accuracy  with a minimal error for solving 

initial value problem; 

(b)      determine the consistence and convergence nature of the method; 

(c) implement and compared the performance of the new method with Kutta-Nystrom sixth-stage fifth-order 

method using some tested initial value problems. A display of solution tables will be provided as a way of comparing 

both numerical results. For the purpose of clarity the following definitions are necessary.  

Consider the general one-step explicit Runge-Kutta method given by; 

 1 , ,                                                                                                                                                         (2)n n n ny y h x y h  

 

Lambert [12] defining  

The general one-step method (2) is said to be of order P, if P is the largest integer for   which  

       1, ( ),                                                                                                                             (3)py x h y x h x y x h o h    

 

holds, where  y x  is the theoretical solution of the initial value problem 

Lambert [12], also define the general one-step method (2) be consistent with the initial problem (1) if: 

   , ,0 ,                                                                                                                                                              (4)x y f x y 

 

Then we can say that the method in equation (2) is consistent with the initial value problem, furthermore, if:  
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           ' 2, ( ), , ( ),0                                                                                           (5)y x h y x h x y x h hy x h x y x o h      

 

Since       ' , , ( ),0y x f x y x x y x  by equation (4), thus a consistent method has order of at least one. 

Another important definition given in Lambert [12] is that, the local truncation error at 
1nx 

of the general explicit one-

step method in (2) defined as
1nT 
, where  

      1 1 , ,                                                                                                                                      (6) n nT y x y x h x y x h   

 

And  y x  is the theoretical solution of the initial value problem 

Furthermore, the general one-step method (2) is said to be convergent if the initial value problem in (1), has the 

corresponding approximation 
ny  satisfying    limit  as n                                              (7)ny y x   

 

 

II. Derivation of the Method 

The sixth-stage fifth-order Runge-Kutta formula can be obtained using the following procedure: 

From the general Runge-Kutta method, get a sixth-stage fifth-order method; 

Obtain the Taylor series expansion of 
'i sk about the point  ,   1,2,3,4,5,6ny i   

Carry out substitution to ensured that all 
'i sk  are in terms of 

1k only 

Reducing all the 
'i sk in terms of 

1k  and substituting into the increment function;.  
6

1

,n i i

i

y h b k


  , 

followed by some simplification we get the required Runge-Kutta method by  comparing  the coefficients of all partial 

derivatives of y with Taylor series expansion of fifth-order involving only partial derivatives with respect to y as shown 

in the derivation below. 

As a result, a set of 12 linear and non linear equations will be generated by varying the parameters of the sets of 

equations generated. After all that, a new sixth-stage fifth-order explicit Runge-Kutta formula will be obtained as 

follows: 

From equation (2), the general Runge-Kutta method is defined as:  

1 ( , , )n n n ny y h x y h  
          

   

1

( , , ) 1,2,3,...6                                                                                            (8)
R

n n i i

i

x y h b k i


 
  

 

1 ( , )                                                                                                                      (9)n nk f x y f 

            

1

1

( , )     2,3,...6                                                    (10)
i

i n i n ij j

j

k f x hc y h a k i




   

            

1

1

  ,    2,3...6                                                                                                                       (11)
i

i ij

j

c a i




 
  

Since we are looking for a method with six stages, then we shall adopt the Taylor series to expand (10), by setting i = 1, 

2,3,4,5 and 6 as; 
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1 ( , )n nk f x y
 

2 2 21 1( , ( ))n nk f x hc y h a k  
       

3 3 31 1 32 2( , ( ))n nk f x hc y h a k a k   
        

4 4 41 1 42 2 43 3( , ( ))n nk f x hc y h a k a k a k    
       

     

6 6 61 1 62 2 63 3 64 4 65 5( , ( ))n nk f x hc y h a k a k a k a k a k      
  

For the purpose of linearity, the above parameters will be modified as follows: 

521 1 31 2 32 3 41 4 42

743 6 51 52 8 53 9 54 10

61 11 62 12 63 13 64 14 65 15

, , , , ,

, , , , ,

, , , ,

a a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a

    

    

    
 

Substituting we have; 

1 ( )nk f y
                                                                                                                                      (12)

 

2 1 1( ( ))nk f y h a k                                                                                 (13) 

      

3 2 1 3 2( ( ))nk f y h a k a k  
                                                                                                                  (14)

  

      

4 4 1 5 2 6 3( ( ))nk f y h a k a k a k   
                                                                                               (15)

  

     

5 7 1 8 2 9 3 10 4( ( ))nk f y h a k a k a k a k                                                                                    (16) 

   

6 11 1 12 2 13 3 14 4 15 5( ( ))nk f y h a k a k a k a k a k     
                                                               (17) 

Adopting Taylor series expansion about the point (yn), i.e., discarding all the derivatives of x and leaving those of y 

alone, we have: 

 

 

1

2 1 1

0

1

!

                                                                                                                (18a)

                                              

n

i

n

i

k f y

d
k y ha k f y

i dy







 
 
 
 



   

 

3

0

4 4 1 5 2 6 3

0

2 1 3 2

1

!

1
( )

!

                                   (18b)

                                                                   (18c)

         

i

n

i

i

n

i

d
k y h f y

i dy

d
k y h a k a k a k f y

i dy

a k a k








 

   

 
 

 

 
 
 





 5 7 1 8 2 9 3 10 4

0

1
( )

!

                                                  (18d)                                                        

                                        

i

n

i

d
k y h a k a k a k a k f y

i dy





    
 
 
 



 6 11 1 12 2 13 3 14 4 15 5

0

1
( )

!

        (18e)

                                   (18f)

i

n

i

d
k y h a k a k a k a k a k f y

i dy





     
 
 
 



 

Expanding (18a) to (18f) for 1 6,...,k k , we have the following; 

  (19) 
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                                         (20)  

 
                        (21) 

 
                                         (22) 

                 (23) 

                     (24) 

Substituting 'i sk
into 1 ( , , )n n n ny y h x y h  

 

 Where  
1

( , , )
R

n n i i

i

h x y h b k


  and simplifying we have equation (25) 
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(25) 

Finally, we compared equation (25) with Taylor series expansion of order five given thus; 

2 3 2 2 4 3 2 3

1 1 1 1 1 1 1 1

5 4 2 2 3 3 2 4

1 1 1 1 1

1 1 1
( ) ( 4 )

2 6 24

1
( 11 7 4 )

120

n n y y yy y y yy yyy

y yy y y yyy yy yyyy

y y hk h k f h k f k f h k f k f f k f

h k f k f f k f f k f k f

        

    

 to arrive at the following set of parametric equations:
 

1 2 3 4 5 6 1b b b b b b                               (26a)

1 2 3 3 4 4 5 5 6 6

1

2
a b b c b c b c b c                               (26b)                                                

1 3 3 1 5 4 1 8 5 1 12 6 6 4 3 9 5 3 10 5 4 13 6 3 14 6 4 15 6 5

1

6
a a b a a b a a b a a b a b c a b c a b c a b c a b c a b c                              (26c)                                              

2 2 2 2 2

1 2 3 3 4 4 5 5 6 6

1

3
a b b c b c b c b c                                                                                                         (26d)                        
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1 3 6 4 1 3 9 5 1 3 13 6 1 5 10 5 1 5 14 6 1 8 15 6 6 10 5 3

6 14 6 3 9 15 6 3 10 15 6 4

1

24

a a a b a a a b a a a b a a a b a a a b a a a b a a b c

a a b c a a b c a a b c

     

   
                               

(26e)         

 

2 2 2 2 2

1 3 3 1 5 4 1 8 5 1 12 6 1 3 3 3 1 5 4 4 1 8 5 5 1 12 6 6 6 4 3

2 2 2 2

6 4 3 4 9 5 3 9 5 3 5 10 5 4 10 5 4 5 13 6 3 13 6 3 6 14 6 4 14 6 4 6

2

15 6 5 15 6 5 6

1 2 2 2 2

2 2 2 2 2

1
2

3

a a b a a b a a b a a b a a b c a a b c a a b c a a b c a b c

a b c c a b c a b c c a b c a b c c a b c a b c c a b c a b c c

a b c a b c c

       

        

  

                         

(26f) 

3 3 3 3 3

1 2 3 3 4 4 5 5 6 6

1

4
a b b c b c b c b c    

                                   (26g) 

1 3 6 10 5 1 3 6 14 6 1 3 9 15 6 1 5 10 15 6 6 10 15 6 3

1

120
a a a a b a a a a b a a a a b a a a a b a a a b c    

                                               (26h) 
2 2 2 2 2 2 2 2 2 2 2 2

1 3 3 1 3 6 4 1 3 9 5 1 3 13 6 1 5 5 1 5 10 5 1 5 14 6 1 8 5 1 8 15 6

2 2

1 12 6 1 3 6 4 3 1 3 6 4 4 1 3 9 5 3 1 3 9 5 5 1 3 13 6 3 1 3 13 6 6

1 5 6 4 3 1 5 10 5 4

2 2 2 2 2 2

2 2

a a b a a a b a a a b a a a b a a b a a a b a a a b a a b a a a b

a a b a a a b c a a a b c a a a b c a a a b c a a a b c a a a b c

a a a b c a a a b c

       

      

   1 5 10 5 5 1 5 14 6 4 1 5 14 6 6 1 8 9 5 3

2 2

1 8 10 5 4 1 8 15 6 5 1 8 15 6 6 1 12 13 6 3 1 12 14 6 4 1 12 15 6 5 6 4 3

2 2

6 10 5 3 6 10 5 3 4 6 10 5 3 5 6 14 6 3 6 14 6 3

2 2 2 2

2 2 2 2 2 2

2 2 2

a a a b c a a a b c a a a b c a a a b c

a a a b c a a a b c a a a b c a a a b c a a a b c a a a b c a b c

a a b c a a b c c a a b c c a a b c a a b c c

  

      

     2 2

4 6 14 6 3 6 9 5 3 9 10 5 3 4

2 2 2 2 2 2

9 15 6 3 9 15 6 3 5 9 15 6 3 6 10 5 4 10 15 6 4 10 15 6 4 5 10 15 6 4 6 13 6 3

2 2 2 2

13 14 6 3 4 13 15 6 3 5 14 6 4 14 15 6 4 5 15 6 5

2 2

2 2 2 2

11
2 2 2

60

a a b c c a b c a a b c c

a a b c a a b c c a a b c c a b c a a b c a a b c c a a b c c a b c

a a b c c a a b c c a b c a a b c c a b c

  

       

     

             (26i)

 

3 3 3 3 2 2 2 2 3 2

1 3 3 1 5 4 1 8 5 1 12 6 1 3 3 3 1 5 4 4 1 8 5 5 1 12 6 6 6 4 3 6 4 3 4

3 2 3 2 3 2 3 2 3

9 5 3 9 5 3 5 10 5 4 10 5 4 5 13 6 3 13 6 3 6 14 6 4 14 6 4 6 15 6 5

2

15 6 5 6

3 3 3 3 3

3 3 3 3

3

a a b a a b a a b a a b a a b c a a b c a a b c a a b c a b c a b c c

a b c a b c c a b c a b c c a b c a b c c a b c a b c c a b c

a b c c

        

         


7

20

                               (26j)

 

2 2 2 2 2 2 2 2 2

1 3 3 3 1 5 4 4 1 8 5 5 1 12 6 6 6 4 3 4 9 5 3 5 10 5 4 5 13 6 3 6 14 6 4 6

2

15 6 5 6

1

15

a a b c a a b c a a b c a a b c a b c c a b c c a b c c a b c c a b c c

a b c c

       

 

                          (26k)

 

4 4 4 4 4

1 2 3 3 4 4 5 5 6 6

1

5
a b b c b c b c b c    

                         (26l) 

Note, for convenience, we assume values for the following parameters; 
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     

 

1 2 1 3 2 3 4 4 5 6 5 7 8 9 10

6 11 12 13 14 15 2

1 2 1 3
0, , , ,

3 3 3 5

1
1,  and ;

3

c c a c a a c a a a c a a a a

c a a a a a b


               


      
         

(27)     

 

From (26a), (26b), (26d), (26g) and (26l), we solve simultaneously with the help of Maple-18 software and obtain the 

following results:    

1 3 4 5 6

7 9 11 125 1
, , , ,

72 8 48 144 12
b b b b b    

 

By substituting   
1 2 3 4 5 6 3 4 5 6 1, , , , , , , , ,  and b b b b b b c c c c a into the remaining seven equations,      we 

observed that there are seven equations with ten unknown which is not practically solvable. Thus we have three 

“free” parameters in other to solve the equations. Hence, setting   3 14 15

2 7 3
, , ,

3 5 5
a a a   we have 

5 6 8 9 10 12 13

43549 30361 35525 27646 10643 736810 28702
, , , , , ,

7217 14840 9169 19955 155037 53619 5227
a a a a a a a          

 

2 4 7 11

167765027 51638854921283 9039268043
0, , ,

45900120 28366716018615 1401332565
a a a a   

 

Substituting these values of the 
'i sa

 above in the general Runge – Kutta method we have the  new formula becomes:   

1 1 2 3 4 5 6(14 48 162 33 125 12 )
144

n n

h
y y k k k k k k       

                                                      (28)
 

Where 

1 ( )nk f y
 

2 1

1
( )

3
nk f y hk 

 

3 2

2

3
nk f y hk

 
  

   

4 1 2 3

167765027 43549 30361

45900120 7217 14840
nk f y h k k k

  
      

    

5 1 2 3 4

51638854921283 35525 27646 10643

28366716018615 9169 19955 155037
nk f y h k k k k

  
       

    

6 1 2 3 4 5

9039268043 736810 28702 7 3

1401332565 53619 5227 5 5
nk f y h k k k k k

  
        

    
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The Butcher’s array will be; 

0 0  

1

3

1

3  

2

3  

2

3  

1

3

167765027

45900120


43549 30361

7217 14840


 

3

5

51638854921283

28366716018615


35525 27646 10643

9169 19955 155037
 

 

1

9039268043

1401332565


736810 28702

53619 5227


7 3

5 5


 

7 1 9 11 125 1

72 3 8 48 144 12
  

 

III. Theorem 

the new Sixth-Stage Fifth-Order Runge-Kutta formula is consistent and converges very fast for any initial value 

problems of the form 
'

0 0( , ) , ( ) , . ( , ,0) ( , )y f x y y x y i e x y f x y    

 

Proof:  

Using equation (28) with 'i sk  as given in equations (28a) to (28f) we establish that the new formula is convergent and 

consistent in the solution of the ivp, 
'

0 0( , ) , ( ) , . ( , ,0) ( , )y f x y y x y i e x y f x y  
 

 Given that:  

6

1 1

2 3 1

4 5 1 6 2

3 1 7 8 1

( ) (14 ( ) 48[ ( ( ( )))]
144

162[ ( ( ( ) ( ( ( )))))]

33[ ( ( ( ) ( ( ( ))) ( ( ( ( )

( ( ( ))))))))] 125[ ( ( ( ) ( (

n n n n n n

n n n n

n n n n n n

n n n n

h
T h y y f y f y a h f y

f y h a f y a f y a hf y

f y h a f y a f y a hf y a f y h a f y

a f y a hf y f y h a f y a f y a hf

     

   

    

     

9 2 3 1

11 12 1

13 2 2 3 1

14 4 5 1

6 2 3

( )))

( ( ( ( ) ( ( ( ))))))))]

12[ ( ( ( ) ( ( ( )))

( ( ( ( ) ( ( ) ( ( ( ))))))

( ( ( ( ) ( ( ( )))

( ( ( ( ) (

n

n n n n

n n n n

n n n n n

n n n n

n n

y

a f y h a f y a f y a hf y

f y h a f y a f y a hf y

a f y h a f y h a f y a f y a hf y

a f y h a f y a f y a hf y

a f y h a f y a f

   

   

     

   

  1

15 7 8 1 9 2

3 1

10 4 5 1

6 2 3 1

( ( )))))))))

( ( ( ( ) ( ( ( ))) ( ( ( ( )

( ( ( ))))))

( ( ( ( ) ( ( ( )))

( ( ( ( ) ( ( ) ( ))))))))))))]

n n

n n n n n n

n n

n n n n

n n n n

y a hf y

a f y h a f y a f y a hf y a f y h a f y

a f y a hf y

a f y h a f y a f y a hf y

a f y h a f y a f y a hf y



     

 

    

  
 

 

Dividing all through by h and taking limits as      , we obtain; 



American Journal of Sciences and Engineering Research www.iarjournals.com 

 

38 www.iarjournals.com 

 

 1 14 ( ) 48 ( 162 ( ) 33 ( ) 125 ( ) 12 ( ))
144

n n
n n n n n n

y y h
f y f y f y f y f y f y

h

  
      

 

 
 1 1
144 ( )

144

n n
n

y y
f y

h

  
 

 

 '1 ( )n n
n

y y
y f y

h

  
  

 

 Hence the method is consistent with the solution of the initial value problem. According to Lambert [12] the 

consistency of a method invariably implies convergence. 

 

IV. IMPLEMENTATION OF THE NEW FORMULA 

In order to prove the usefulness of our method, comparisons were made with the Kutta-Nystrom method, by solving 

some selected initial value problems as shown below. The numerical solution to these initial value problems were 

generated by using MATLAB package. 

Problem 1:
' ; (0) 1 , 0 1y y y x    (Lambert, [10] ) 

With theoretical solution  ( ) , 0.1xy x e h   

Problem 2:
' 1; (0) 1 , 0 1y y y x     With theoretical solution   ( ) 1 2 , 0.1xy x e h   

(Agbeboh [4] )
 

 

Problem 3:
' 2 1; (0) 1 , 0 1y y y x     (Lambert [10] ) 

With theoretical solution 

1
( ) tan , 0.1

4
y x x h

 
   

 

 
 

TABLE 1; NUMERICAL RESULT FOR PROBLEM 1 
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TABLE 2; NUMERICAL RESULT FOR PROBLEM 2 

 
 

TABLE 3; NUMERICAL RESULT FOR PROBLEM 3 

 
 

 
PLOT 1:           ERROR ANALYSIS OF PROBLEM 1 
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PLOT 2: ERROR ANALYSIS OF PROBLEM 2 

 

 
PLOT 3: ERROR ANALYSIS OF PROBLEM 3 

 

V. SUMARRY AND CONCLUSION 

A sixth- stage fifth-order Runge-Kutta formula for solving initial value problems in ordinary differential 

equation was derived and implemented. A careful look at the tables of results for the solved problems revealed the 

effectiveness of the Sixth-Stage Fifth-Order Runge-Kutta’s methods by displaying relatively low error level, when 

compared with the result from Kutta-Nystrom method for the same ivps.  

 It was also observed that the new method has the capacity to solve linear and non-linear problems, which 

can be seen from the problems solved above. This new method maintains a high degree of accuracy in handling first 

order initial value problems. We hope to extend the method to second order initial value problems with a view to 

finding out the level of stability of the method. From the results obtained via the numerical experiment, it shows that 

the method is consistent and appropriate for the solution of non-stiff initial value problems in Ordinary Differential 

Equation. 
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