American Journal of Sciences and Engineering Research

E-ISSN -2348 – 703X, Volume 4, Issue 5, 2021

Fuzzy Inference Modeling of Rain's Beginning and Ending in Coastal Areas of South East Madagascar

Juliette SOANAOLY¹, Lucius RAMIFIDISOA^{2*}, AMBEONDAHY³, Ruffin MANASINA³, Adolphe A. RATIARISON¹

¹Atmosphere, Climate and Oceans Dynamics Laboratory (DyACO), Physics and Applications, Sciences and Technologies, University of Antananarivo, Madagascar. ²ENSET, University of Antsiranana, Madagascar. ³I.S.S.T.M, University of Mahajanga, Madagascar

ABSTRACT: This research is based on the method of artificial intelligence including fuzzy logic. The objective is to model the dates of the beginning and the ending of rain during the period from 1980 to 2017. We have as study area the coastal areas of South-East Madagascar. It is delimited between 22° to 28° South latitude and 48° to 49° East longitude. The rainy season in this area is between December 1st and April 2nd. The model obtained is combined with the observation data. Also, the calculated MAPE is less than 10%. Therefore, our model is excellent.

Keywords: Artificial Intelligence, modeling, fuzzy inference, rain's beginning and ending

I. INTRODUCTION

Fishing occupies an important place in the economic activity of Malagasy people. Nevertheless, it is undergoing serious consequences in the face of the current climate change such as the increase of salinity sea water caused by the lack of rain. It is for this optic our study is focused on the modeling of the dates of the beginning and the ending of rain in the coastal zones in order to improve the contribution on the economy of Madagascar.

II. METHOLOGIES

2.1. Study area

The study area is delimited between 22°S to 28°S South latitude and 48°E to 49°E East longitude as shown in Figure 1.

Figure 1: Study area

2.2. Data

Our data used are rain's beginning and ending dates calculated from the Anomalous Accumulation method for the entire period from 1980 to 2017 [1].

2.3. Fuzzy Inference System (FIS) [2][3][4][5]

This method is part of artificial intelligence which is able to formalize approximated situations, non-exact situations as well as, to treat imprecise data in order to approximate human reasoning. It also uses linguistic rules to establish relationships between input and output variables.

In fuzzy logic, there are three main steps to follow:

Fuzzification aims to transform the non-fuzzy inputs to a fuzzy variable.

Fuzzy Inference constitutes rules of the type "If...Then". It computes the consequence of each fuzzy rule of the input vector and aggregates the conclusions of all those rules activated on this vector.

<u>Defuzzification</u> is the inverse transformation of the first. It allows to determinate the numerical values to this command.

III. RESULTS

The variables to be modeled are time series of rain's beginning and ending dates over the 38 years of study. These dates are used as the input and output of the model.

3.1. Discourse universe

The discourse universe and the number of partitions for the beginning and the ending of rain are showed on this Table 1:

Beginning and Ending of	Discourse universe	Partition numbers
rain		
Start	U _d = [312 161]	50 partitions (A1, A2,A50)
End	U _f = [66 131]	34 partitions (a1, a2,a34)

Table 1: Discourse universe and number of partitions in the beginning and the ending of rain

3.2. Membership function

The model adopted for the rain's beginning is of order 2. Therefore, we have three similar membership functions (two for the input and one for the output). As for the end of rain, we have four similar membership functions (three for the input and one for the output) because the adopted model is of order 3.

Figure 2 represents an example of those membership functions for the rain's beginning and Figure 3 for the rain's ending.

Figure 2: Membership function of rain's beginning

Figure 3: Membership function of rain's ending

3.3. Fuzzification

Table 2 recapitulates the numerical values and the fuzzy values of the rain's beginning and rain's ending dates during the study period (1980-2017).

YEAR	RAIN'S BEGINNING		RAIN'S ENDING	
	REAL VALUE	FUZZY	REAL	FUZZY
		VALUE	VALUE	VALUE
1981	333	A22	113	a24
1982	330	A19	80	a8
1983	330	A19	81	a8
1984	320	A9	109	a22
1985	312	A1	89	a12
1986	326	A15	77	а6
1987	332	A21	110	a23
1988	361	A50	90	a13
1989	349	A38	92	a14
1990	337	A26	112	a24
1991	325	A14	116	a26
1992	346	A35	105	a20
1993	356	A45	97	a16
1994	356	A45	84	a10
1995	335	A24	106	a21
1996	329	A18	88	a12
1997	335	A24	77	a6
1998	321	A10	66	a1
1999	338	A27	86	a11
2000	344	A33	94	a15
2001	335	A24	85	a10
2002	341	A30	131	a34
2003	344	A33	100	a18
2004	343	A32	73	a4
2005	350	A39	110	a23
2006	344	A33	81	a8
2007	322	A11	77	a6
2008	351	A40	69	a2
2009	314	A3	96	a16
2010	320	A9	78	a7
2011	348	A37	106	a21
2012	336	A25	112	a24
2013	344	A33	105	a20
2014	327	A16	84	a9
2015	350	A39	72	a4
2016	326	A15	95	a15
2017	332	A21	101	a18

Table 2: Fuzzification of rain's beginning and ending dates

3.4. Creation of fuzzy rules

The adopted fuzzy rules take the form on Table 3. The numbered letters are linguistic terms used for the beginning and ending dates of rains during the study period.

For an order 2 model (rain's beginning), it is two antecedent years for an output. For example, in the first rule, we have as inputs the dates of the rain's beginning for the year 1981 and 1982 give the output for the year 1983. In the second rule, the year 1982 and 1983 give the rain's beginning for the year 1984 and so on until 2017.

For a model of order 3 (rain's ending), we have 3 antecedent years for an output; that is, we enter the dates of the rain's ending of the three previous years such as the year 1981, 1982 and 1983 to have the rain's ending for the year 1984 and the year 1982, 1983 and 1984 give the year 1985 and so on until 2017.

Rain's beginning (Order 2) :	Rain's ending (order 3) :
Precedents> consequents	Precedents> consequents
A12, A19> A19	a24, a8, a8> a22
A19, A19> A9	a8, a8, a22> a12
A19, A9> A1	a8, a22, a12> a6
A39, A15> A21	a9, a4, a15> a1

Table 3: Example of fuzzy rules for rain's beginning and ending dates

3.5. Cartography of model

The two figures (Figures 4 and 5) illustrate the mappings of the resulting model. For the beginning of rain (figure 4), it is a model with 2 inputs, one output and 34 fuzzy rules. As for the end of rain, we have a model with 3 inputs, one output and 34 fuzzy rules.

System Modelisation: 2 inputs, 1 outputs, 34 rules

Figure 4: Cartography of rain's beginning model

System Modelisation: 3 inputs, 1 outputs, 34 rules

Figure 5: Cartography of rain's ending model

3.6. Defuzzification

The table 4 shows the defuzzified values of the model output of the rain's beginning and ending dates.

Vear	Rain's	Rain's		Rain's	Rain's
1001	beginning	ending	Year	beginning	ending
1983	320	108	2001	341	131
1984	312	88	2002	344	100
1985	326	76	2003	343	72
1986	332	110	2004	350	110
1987	361	90	2005	344	80
1988	349	92	2006	322	76
1989	337	112	2007	351	68
1990	325	116	2008	314	96
1991	346	104	2009	320	78
1992	356	96	2010	348	106
1993	356	84	2011	336	112
1994	335	106	2012	344	104
1995	329	88	2013	327	82
1996	335	76	2014	350	72
1997	321	66,6	2015	326	94
1998	338	86	2016	332	100
1999	344	94	2017	320	110 5
			(Forecast)	520	110,5
2000	335	84			

Table 4 : Defuzzification of rain's beginning and ending dates

3.7. Graphic representation of model

The Figures 6 and 7 show respectively the models of the rain's beginning and the ending during the study period. It can see that the curves of the observation data (in black) are combined with the obtained models (in blue). This combination suggests that we have good models. The predict date of the rain's beginning and ending for the year 2018 is :

- November 15th, 2017 (beginning)
- April 19th, 2018 (ending)

Figure 6 : Modeling of dates beginning rain

Figure 7: Modeling of dates ending rain

3.8. Model validation

The calculation of the percentage of mean error (MAPE) and the percentage of accuracy allow us to validate the performance of our models. Indeed, the MAPE values calculated and the accuracy percentages are showed on Table 5. Those results present that our models selected for the dates of rain's beginning and ending are excellent.

Error	Start of rain	End of rain
MAPE	0%	1,32%
Pourcentage of accuracy	100%	97,43%

Table 5 : MAPE values and percentage accuracy of model

IV. CONCLUSION

The fuzzy logic method allowed us to model the dates of the rain's beginning and the ending in the coastal areas of the South-East of Madagascar in the integrality of time from 1980 and 2017. The model retained for the rain's beginning is at order 2 with 34 fuzzy rules. Those models are excellent because the curve of the observation data and that of the models obtained are combined. Also the error calculated between those two curves is less than 10%. Thus, the rainy season for the year 2018 will be started on December 15, 2017 and will be ended on April 19, 2018.

V. REFERENCES

- 1. SOANAOLY Juliette. Diffusion de l'eau de pluie dans l'eau de mer et modélisation par inférence floue et par réseau de neurones de la pluviométrie et de la salinité dans le Sud-Est de Madagascar. Thèse de l'Université d'Antananarivo ,2021, 270p.
- 2. TALBI Nesrine. Conception des Systèmes d'Inférence Floue par des Approches Hybrides : Application pour la Commande et la Modélisation des Systèmes Non linéaires. Thèse de doctorat de l'Université. Algérie: Université de Constantine 1, 2014, 150p.
- 3. Tanguy Giuffrida et Al. *Fuzzy4U: Un système en logique floue pour l'adaptation des interfaces utilisateur.* 30eme conférence francophone sur l'interaction homme-machine, Brest, France, 2018, Hal-01898998ff, pp.52-62.
- BRAHIM WALID & BENKOUIDER Mounir. Classification neuro-floue pour l'identification des défaisances. Mémoire de projet de fin d'études. Algérie: Université de BLIDA 1, Faculté de technologie Département d'Électronique. 2015, 95p.
- BENKACI ALI TARIK. Modélisation pluie-débit mensuelle et journalière par les modèles conceptuels et les systèmes neuro-flous (Application aux bassins Algériens). Thèse pour l'obtention de doctorat ES-Sciences Agronomiques. Algérie: Institut National Agronomique, 2005-2006, 222p.