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Abstract: The increase in demand, the growing deployment of electronic and computer equipment, the 

connection of renewable energy sources and the difficulty of updating existing infrastructures limit the 

capacities of conventional computing means used in power flow analysis. Recent studies show that new 

techniques are widely used for solving the power flow problem in well-conditioned and ill-conditioned systems. 

While the power flow calculation in well-conditioned systems is easily solved, the ill-conditioned power systems 

can pose difficulties. This paper presents the Levenberg-Marquardt method for solving the power flow problem 

in ill-conditioned systems. This method is basically the modification of the Newton-Raphson method by adding 

a Lagrange multiplier in its algorithm. The simulation with the proposed method was performed under Matlab 

for ill-conditioned IEEE 11-bus, 13-bus, 20-bus and 43-bus test systems. The results obtained are compared with 

the methods of Newton-Raphson and Runge-Kutta for the number of iterations, the computation time, the 

tolerance and the convergence error. The results prove that the Levenberg-Marquardt method is efficient and 

excellent in the case of ill-conditioned power systems. 
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I. Introduction 

The power flow (PF) in the power system composed of generators, transmission lines and loads, is 

probably one of the very important tools for the control, operation and optimization of power systems [1,2]. 

The main objective of PF is to solve a set of systems of nonlinear equations relating the voltages and powers 

injected at each bus. Like all nonlinear systems, PF equations can be divided into two categories, namely, well-

conditioned and ill-conditioned [3]. Classically, the PF problem in well-conditioned networks is easily solvable 

using standard solvers such as Newton-Raphson method (NR) [4]. Nevertheless, the PF problem in ill-

conditioned systems may pose an additional challenge for conventional techniques [5]. 

For decades, the PF calculation in ill-conditioned systems was very infrequent. Nowadays, this trend is 

changing as well as the problem of PF in ill-conditioned systems is more and more frequent in the power 

system operation [6]. The main reason is the increasing demand for electricity combined with the inflexibility 

of the existing electricity infrastructure, leading to the low flexibility of the electricity network operator [7]. In 

addition, the deployment of power electronic equipment accentuates the PF problem in ill-conditioned 
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systems, which contributes to the modification of power line impedances [8]. Therefore, the Jacobian matrix in 

the conventional NR method becomes an ill-conditioned system. In this context, the development of new 

efficient and robust approaches for solving the PF problem still remains a major challenge. 

This article presents a Levenberg-Marquardt (LM) method, based on the modification of the NR method, 

for solving the PF problem in ill-conditioned power systems. This method of solving the PF makes it possible to 

reduce the computation time as well as the number of iterations, on the one hand, to increase the 

convergence rate, on the other hand, in ill-conditioned power systems. The proposed method is applied on 

IEEE power systems at 11-bus, 13-bus, 20-bus and 43-bus and the simulation results are compared with NR 

and RK4 methods. 

 

II. Materials and Methods 

2.1 PF Problem and ill-conditioned systems 

In a PF problem, the nonlinear equations relating the injected powers and the voltages (magnitudes and 

angles) at the buses of the power system can be presented in several forms, from the most conventional 

formulation of residual powers to other alternative approaches, such as those based on current injections [9]. 

In this article, the formulation and methodologies based on power residuals will be used. The main objective of 

solving the PF problem is to find the voltages magnitudes and angles at the all buses in power systems. 

Equations (1) and (2) show the PF equations based on power injections in their hybrid form (polar and 

rectangular) without line losses [10,11]. 
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where, g denotes the set of PF equations, x is the PF state vector, sch

kP and sch

kQ are the active power and 

reactive injected powers at kth bus, respectively, kjG and kjB are the real and imaginary parts of the 

admittance kjY , respectively, k k kV = V θ is the complex of the voltage vector at the kth bus, and kj  is 

defined as the difference in voltage angle between the kth and jth buses.  The terms kP and kQ are the 

difference between the scheduled and calculated values, known as the power residuals. The PF variables to be 

determined in hybrid coordinates are composed of the voltage angles at PV and PQ buses and the voltage 

magnitudes at PQ buses, so that the PF state vector is defined by the equation (3). 

 

T

PV PQ PQx = θ θ V 
                                             (3)  

where, PVθ is the vector of the voltage angles at PV buses, PQθ is the vector of the voltage angles at PQ buses, 

PVV is the vector of the voltages magnitudes at PQ buses, and N represent the total number of PV and PQ 

buses in power systems. The notations of PQ and PV are widely used in PF analysis to characterize the types of 

buses in power systems. For a brief explanation, the bus in power system can be categorized into three 

categories (i) PQ buses are load buses in which voltage angle and voltage magnitude are unknown, and active 

power injections (P) and reactive (Q) are known; (ii) PV buses are generators buses in which voltage angle is 

unknown, active power injection (P) and voltage angle ( PVθ ) are known, and reactive power injection is an 
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independent variable; finally (iii) slack bus is a bus in the system whose voltage is fixed, while the power 

injections are dependent variables. 

To simplify the writing of equation (2), the nonlinear equations of PF in hybrid coordinates (polar and 

rectangular) can be expressed in the following form: 

  g x =0                                                           (4) 

Due to the strong nonlinearities in equation (4), solving the power flow equations is very difficult. Several 

iterative approaches have been proposed in the literature to solve the PF problem [12,13,14]. The most widely 

employed in PF analysis is the NR method, which is defined by the following mapping [15]: 

 

 

       
     

-1
h h h

h+1 h h

Δx =- g' x g x

x = x +Δx

    



                               (5) 

where, X'g g   is the Jacobian matrix of the PF equation, which is formed by the first-order partial 

derivatives of the function g  with respect to the variables x . The procedure for PF solution by the NR 

method is continued until the power residuals 
h

kP and 
h

kQ  are less than specified accuracy (Eq.6). Usually, 

the number of maximum iterations is also limited. 

    max abs g x < ε                                                     (6) 

 

In an ill-conditioned PF problem, the Jacobian matrix is generally singular or quasi-singular and the resolution 

of the PF equations using the NR solver may fail to converge or have slow convergence rates. Thus, the ill-

conditioned power systems is due to the presence of one or more of the following factors, namely, short lines, 

very high R/X ratio of line, atypical circuit parameter (negative reactance), bad or unfit selection of the slack 

bus, operation at the limit of stability, radial topology with loops, and choice of voltage initial guess [3]. When 

the system presented by equation (4) is well-conditioned, the PF solution can be found easily using traditional 

techniques, especially, NR method. Moreover, the NR method has quadratic and local convergence, which 

means that the convergence properties are lost if the initial estimate of the state variables X is far away of PF 

solution. This is the reason why the NR method has convergence difficulties when solving the PF equations in 

ill-conditioned systems [16]. 

 

2.2 Levenberg – Marquardt method  

The solution of the PF equations in an ill-conditioned system is very sensitive to the variation of the Jacobian 

matrix coefficients as well as to the variation of the coefficients of the residual power vector. Most of PF 

solvers have convergence difficulties. However, the solution of PF in an ill-conditioned systems does exist, but 

the NR method has difficulties if the flat initial guess of voltage is used [3,17]. For example, at the initial 

iteration, all voltage magnitudes equal to 1, and all voltage angles equal to 0. Indeed, it is crucial to find the 

approaches able to solve the problem of PF in ill-conditioned systems. 

The Levenberg-Marquardt (LM) method is one of the iterative techniques for solving a PF problem. It consists 

to minimize the sum of the squares of the residual errors on the active and reactive powers of the buses. 

Originally, the LM method is a minimization technique widely used in geophysics and electromagnetism 

[18,19]. For the resolution of the PF, the variables to be determined are the voltage angles at the PV buses, the 

voltage angles at the PQ buses, and the voltage magnitudes at the PQ buses. In the case of ill-conditioned 

systems, these variables will be represented by the vector X of equation (3). The constraints are the residual 

errors on the active power at the PV bus and on the active and reactive power at the PQ bus. Equation (7) 

represents the constraints on the active and reactive powers mismatches. The column matrix representing the 

residual errors on the powers at the operating point 0x is expressed by equation (8). 
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T

g x  = ΔP ΔQ                                         (7) 

    
-1

0 o 0f  =- g' x g x                                   (8) 

where  0 0f =f x  and  0 0g' x =J  denotes the Jacobian matrix of equation (7) at initial point 0x . At the 

operating point 0x +Δx , the residual error on the powers can be approximated by equation (9) using first-

order Taylor series expansion. Hence, equation (10) presents the sum of the squares of the residual errors on 

the active and reactive powers of the buses in power system. 

      0 0 0  f x +Δx  = f x +g' x Δx                                    (9) 

 

   

           

T

1 0 0

T T TT T

0 0 0 0 0 0

S  =  f x Δx f x Δx

= Δx g' x g' x Δx +2Δx g' x f x +f x f x

 

            (10) 

The value of the increment Δx of PF variables that minimizes equation (10) cancels the gradient 1S  with 

respect to the variable x . Equation (11) shows the expression for the null gradient 1S allowing the value of this 

increase to be determined. Hence, the solution required to minimize 1S  is given by equation (12). 

        
T T

1 0 0 0 02g' x f x Δx +2g' x f x = 0S                                    (11) 

         
-1

T T

0 0 0 0Δx = - g' x g' x g' x f x 
 

                                 (12) 

The result of equation (12) is identical to that obtained by the NR method of equation (5). However, this 

increment Δx leads to divergence when the initial estimate of is far from the final solution. Moreover, the 

Jacobian matrix is singular and the cost of the resolution by the method of NR is expensive. To avoid this 

disadvantage, the LM method offers an alternative by introducing a Lagrange multiplier λ  to the sum of the 

errors of the powers [20]. The introduction of the damping parameter consists in reducing the distance 

between the final solution and the initial estimate. The new objective function to be minimized can be 

expressed by equation (13). Hence, the increment required (direction) to minimize LM1S  can be obtained by 

equation (14) [21]. 

        
T T

LM1 0 0S  = f x f x + λ x - x x - x                        (13) 

         
-1

T T

0 0 0 0Δx =- g' x g' x +λI g' x f x 
               

  (14) 

In LM algorithm, the non-negative of damping parameter is adjusted at each iteration to assure a reduction in 

the error. There is no exact method for evaluating the damping parameter that will produce optimal 

convergence for all cases. Indeed, large values of damping factors are preferable when the initial estimate is 

far from the solution. However, the damping factor can be reduced when the estimate is close to the final 

solution, so the residual error of the powers becomes smaller. In our case, the LM method program arbitrarily 

uses equation (15) to determine this factor. Thus, the equation (16) proposes the iterative method of LM 

allowing to determine the direction Δx at each iteration [21]. 

 
   

T

h hh
h

f x f xS
λ = =

1000 1000
                                (15) 

 
        

-1
T T

h h h h h hΔx  =- g' x g' x +λ I g' x f x 
 

           (16) 

Note that, the damping factor in the LM method was introduced to reduce divergence problems and limit the 

distance between the initial point and the next operation point. If the value of damping parameter is too large, 

the increment Δx  becomes zero and the search for the solution does not progress. When the value is too 

small or even zero, the solution is identical to that obtained by the NR method and the LM method is 
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potentially very unstable. The PF procedure by the proposed LM method is formally presented in Algorithm 1. 

The stopping criterion for the algorithm is the convergence tolerance or the maximum number of iterations. 

 

Algorithm 1 : PF solution procedure using LM method 

1: Set iteration counter: h 0  

2: Initial variable guess: h 0x x  

3: while max g(x ) εh  or maxh h
 
do 

5:  Solve (16) 

6:  Update variable: h+1 h hx x +Δx  

7:  Compute parameter hλ  using (15) 

8:  Update iteration counter:  1h h   

9: end while 

 

The methods of solving the PF problem consist to determine the voltages at the buses in power system in a 

way to reduce the residual error of the active power and the reactive power to zero. Mathematically, the 

process of calculation translates into finding the roots of a system of nonlinear equations. Alternatively, the 

search for the solution of the EP can be carried out by determining the voltages so as to minimize the sum of 

the squares of the residuals on the active and reactive powers. 

The PF methods proposed in this article take into account the limits of reactive power generators and 

equipment controls. A technique commonly used in these methods is to check at each iteration the reactive 

power produced on the PV buses, and to switch the PV to a PQ bus if the reactive power limit has been 

exceeded. 

 

III. Results and discussion 

In this section, the performances of the LM method in terms of number of iterations, computation time, 

and convergence tolerance are compared with those of the NR and RK4 methods, which are widely employed 

to solve the EP equations. In order to check the efficiency and performance of the proposed LM method, the 

ill-conditioned systems of IEEE 11-bus, IEEE 13-bus, IEEE 20-bus, and IEEE 43-bus were considered. Topologies 

and parameters of ill-conditioned IEEE 11-bus, IEEE 13-bus, and IEEE 43-bus networks can be found in [22]. 

Additionally, details of the IEEE 20-bus ill-conditioned systems are available in [23]. All the simulations of the 

ill-conditioned systems have been implemented using Matlab R2018a by a Lenovo PC with an Intel® CoreTM 2 

Duo CPU P8600 2.4 GHz processor and 4 GB of RAM, under Ubuntu 18.94 LTS.  

Table 1 provides the computation time (in milliseconds) and total number of iterations for the four ill-

conditioned systems IEEE 11-bus, IEEE 13-bus, IEEE 20-bus, and IEEE 43-bus with the different PF solvers. These 

computations times were obtained as the average over 200 runs of the PF programs, in order to avoid the 

influence of other computer activities. The convergence tolerance was set to -710 . According to this table, the 

LM method improves the efficiency and robustness of the NR method. For example, the use of the LM method 

for solving the PF equations in the IEEE 43-bus power system reduces the computation time by 40% and 94.2% 

compared to the methods of NR and RK4, respectively. It should be noted that the GS method failed the 

convergence in all studied cases, and the NR method have a difficulty to reach convergence in the 11-bus 

network. When the size of the ill-conditioned system is large, the difference between the computation times 

of the different methods is slightly small. For the IEEE 13-bus system, the computation time of the LM method 

is about 32% of the NR method. The LM method requires less number of iterations to reach convergence. For 

example, the use of the LM method in an ill-conditioned 43-bus system reduces the computation time by 

37.5% and 77.3% compared with the NR and RK4 methods, respectively. We observed that the number of 

iterations required by the proposed LM method is almost independent of the network size. This number is 

smaller compared to the RK4 method, but it is slightly low compared to that of the NR method. However, the 
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convergence of these methods depends on the initial values of the voltages. In our case, we have used the 

initial values of the default voltages provided by the ill-conditioned IEEE systems [22,23]. 

 

Table 1 : Computation time (milliseconds) and number of iterations  for the different PF methods 

Test system GS method [24]  NR method [24]  RK4 method [24]  LM method 

 CPU time  Iter.

# 

 CPU time Iter.#  CPU time  Iter.#  CPU time  Iter.# 

IEEE 11-bus Fail Fail  Fail Fail  92,31 9  41,18 10 

IEEE 13-bus Fail Fail  27,78 5  206,92 21  18,88 5 

IEEE 20-bus Fail Fail  37,42 6  581,62 22  35,87 6 

IEEE 43-bus Fail Fail  324,48 8  3332,18 22  194,06 5 

 

In order to better measure the performance of the LM method, the results of the simulations in Table 2 are 

then obtained by varying the precision criteria from -110 to -810 . For the case of the 11-bus system, the 

transmission lines parameters are given in the form of admittance with only 3 decimal places, and we were 

able to make the system converge only with a precision of -310 . From the convergence tolerance value 310 

, the number of iterations of the NR method is nearly constant. In all the cases of the studied systems, the 

variation of the precision does not have a major influence on the number of iterations of the LM method. So 

this method has the best performance in ill-conditioned systems compared to other methods.  

 

Table 2. C Comparison number of iterations and computational accuracy using the NR, LM and RK4 methods 

Tolerance 11-bus 13-bus 20-bus 43-bus 

 NR RK

4 

LM NR RK

4 

LM NR RK4 LM NR RK

4 

LM 

0.1 3 4 3 3 5 3 3 5 3 5 6 3 

0.01 7 7 7 3 7 3 4 8 4 6 8 4 

0.001 9 9 10 5 10 5 4 10 4 7 11 5 

0.0001 - 9 10 5 12 5 4 13 4 7 13 6 

0.00001 - 9 10 5 15 5 5 16 4 8 16 6 

0.000001 - 9 10 5 18 5 5 19 5 8 19 6 

0.0000001 - 9 10 6 21 6 5 22 5 8 22 6 

0.00000001 - 9 10 6 24 6 5 25 5 9 25 7 

 

Figure 1 shows the comparison of convergence errors as a function of number of iterations with the 

three methods for tolerance 710  . From this figure, the LM method offers the possibility of achieving very 

fast convergence compared to other methods. In a 43-bus power system, the NR, RK4, and LM methods 

converged at 8, 22, and 6, respectively. The LM method reaches the convergence of the system from the 6th 

iteration of the calculation program. This rapid convergence is obtained because of the introduction of the 

damping parameter λ  in the LM method. However, the NR method may present convergence difficulties in the 

11-bus system. Moreover, the topology of this transmission system is radial and has only one generator. At the 

end of each system convergence process, the residual powers of the different methods are presented in Table 

3. Indeed, the convergence error of the LM method is significantly low in all cases of the power systems 

studied. 
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(a) (b) 

 
 

(c) (d) 

Figure 1. Comparison of convergence profiles for the power systems using the three methods with 710   : 

(a) IEEE 11-bus;  (b) IEEE 13-bus;  (c) IEEE 20-bus;  (d) IEEE 43-bus. 

 

Table 3. Convergence error for complete process using the different PF solvers 

Method 11-bus  13-bus 20-bus  43-bus 

NR - 7.4746×10
-14

 2.4513×10
-9

 2.7527×10
-8

 

RK4 7.0054×10
-4

 7.4379×10
-8

 6.0038×10
-8

 8.7214×10
-8

 

LM 9.5325×10
-4

 7,4849×10
-14

 8.4326×10
-9

 7,8639×10
-8

  

 

The voltage profiles for ill-conditioned IEEE 11-bus, 13-bus, 20-bus, and 43-bus systems using the NR, 

RK4, and proposed LM methods are presented in Figure 2. The result of the LM method makes it possible to 

reduce the difference between the calculated voltages and their initial values necessary to start the algorithm. 

For example, in a 43-bus system, the NR, RK4, and LM methods calculated the voltage at bus 43 as 1.0763, 

1.0763, and 1.0404 per unit, respectively. While the initial voltage value at bus 43 has been adjusted to 1 per 

unit. 
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(a) (b) 

  
(c) (d) 

Figure 2. Comparison of voltage profiles for the power systems with convergence tolerance 710  : (a) IEEE 

11-bus; (b) IEEE 13-bus;  (c) IEEE 20-bus;  (d) IEEE 43-bus 

 

The characteristics of the curves obtained for the three methods have the same tendencies. The results 

of PF calculation in ill-conditioned systems show that the estimate of the initial guess of the voltages is close to 

the final solutions found by the methods of RK4 and LM. The proposed LM method always gives the best 

results compared to other methods. 

 

IV. Conclusion 

In this paper, the LM method has been proposed to solve the PF problem in ill-conditioned power 

systems. This method is the improvement of the NR method by adding a damping parameter in the 

formulation of the PF problem. The formulation and algorithms associated with PF problem have been 

presented and applied to ill-conditioned IEEE 11-bus, 13-bus, 20-bus, and 43-bus test power systems. The 

simulation results clearly show that the proposed LM method is more competitive than the other traditional PF 

solvers in the ill-conditioned power systems. The computation time and the number of iterations in this 

proposed method are reduced compared with the NR and RK4 methods. Moreover, the number of iterations 

required for the convergence of the system does not vary much with the increase of the computational 

precision. The performance of the LM method is better than the performance of the NR and RK4 methods. 
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The LM method offers another approach to solving PF equations in ill-conditioned systems with a 

simplified design, fast convergence, low number of iterations, and less computation time. Future works should 

be focused on application of this method in large dimensional ill-conditioned power systems. 
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