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ABSTRACT: In this paper, Pareto type –I distribution is proposed to compare the classical estimators such as the 

Maximum Likelihood Estimator (MLE), Uniformly Minimum Variance Unbiased Estimator (UMVUE) and 

Minimum Mean Square Error Estimator (MiniMSE). The Bayes risk can be obtained by using non – informative 

and informative prior  under different loss functions such as Square Error Loss Function(SELF),Quadratic Loss 

Function (QLF),Precautionary Loss Function (PLF) and Entropy Loss Function (ELF) through simulation 

techniques. As per the result, it is observed that the MiniMSE is the best among the other proposed estimators. 

It is also found that the Bayes risk under QLF is least one among all the other loss functions namely SELF, PLF 

and ELF using informative prior.  

 

Keywords: Bayes Estimator, Bayes Risk, Classical Estimation, Informative and non – informative priors, Loss 

function and Pareto distribution.  

 

I. INTRODUCTION 

The Pareto probability distribution is a simple model for non- negative data with positively Skewed 

distribution. This distribution was introduced by Wilfredo Pareto (1848-1923) especially for wealth distribution 

of the population of a city within a given area. The use of the Pareto distribution as model to analyses stock 

prize and instability in business and economic, field of bio medical science, risk factor in insurance company, 

migration of population, survival time in quadratic system, Geophysical phenomena in society, reliability and 

life testing.    Al Omari Ahmed, hadecel salim, Al-Kutubi and Noor akma ibrhim,(2010), studied the comparison 

of the Bayesian estimation with maximum likelihood estimation. Al Omari Mohammed Ahmed and Noor akma 

ibrhim, (2011), have been studied the performance of MLE and Bayes estimation of survival function using non 

informative prior with right censored data. Sankudey and Sudhansu A.Maiti (2012), have studied the Bayes 

estimators of Rayleigh parameter and its associated risk based on extended Jeffrey’s prior under the 

assumptions of both symmetric and asymmetric loss function. R.K.Radha,(2015), studied the Bayesian analysis 

of exponential distribution using informative prior.Kawsar Fatima and S.P Ahmad (2018) have been studied the 

Bayes estimation of shape parameter of Exponentiated moment exponential distribution using informative and 

non – informative priors under different loss functions. Gaurav Shukla, Umesh Chandra and Vinod kumar 

(2020), derived and examined the expression for risk function under three different loss function. It is 

remarkable that the development of appropriate Bayesian inference procure has been very limited. Bayesian 

inference in the Pareto type I distribution for the special case in which the scale parameter is known.   

 

The probability density function (pdf) of Pareto type – I distribution is defined as  
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            f (t ;α,θ) = ,
   

     ; t> α ; θ>0; α>0         (1.1) 

Where t is a random variable, θ is the shape parameter and   is the scale parameter, which is known. 

 

The moments of Pareto type –I distribution, were given by   

Mean,       E(t) =  
  

   
 ;     

Variance, V(t) =  
   

(   ) (   )
 ;     

 

II. Classical Estimation 

Classical estimation is an important estimation techique in statistics.  In this section a specfic method of 

estimation such as Maximaum Liklihood Estimation(MLE),Uniformly Minimum Variance Unbiased 

Eestimation(UMVUE), MiniMean Sequare Error Estimation (MiniMSE), are considered to estimate the shape 

parameter of Pareto type I distribution. 

 

2.1 Maximum Likelihood Estimator   

Let   ,          be a set of ‘n’ random variables from  Pareto Type I distribution with Parameters   and α 

having the probability density function defined in (1.1), then the likelihood function, 

                                 L = ∏  (      ) 
    

                                    = ∏
   

  
   

 
    

                                L =            (   )∑      
 
                   

                         Log L = n log θ+ n θ logα-θ∑      
 
                             

                            
     

  
 = 

 

 
 + nlogα- ∑      

 
    

Using the Maximization Likelihood Principle, we get 

the estimated value of  θ as  

                              ̂ = *
∑      

 
   

 
     +

  

 

 and  ̂         
    (  )    

 In case of frequency distribution 

                             ̂ = *
∑        

 
   

 
     +

  

        

 (2.1.1) 

Where N= ∑  

2.2 Uniformly Minimum Variance Unbiased Estimator 

The distribution whose density functions have the following general form 

  (   )   ( )  ( )   ( ) ( )  is known as one parameter exponential family of distribution. 

The Pareto distribution belongs to the exponential family of distribution has the density function (1.1) can be 

written as 

                                 f(t, θ) = θ       (   )      

                          = θ                       

                          = θ              (  ⁄ )  

 Where, 

 a(θ)= θ,  b(t)=       ,    c(θ)= - θ , d(t)=     (
 

 
) 

Therefore, the statistic P= ∑     (
  

 
) 

    is a complete sufficient statistic for θ. 

It is easy to show that the statistic P is distributed as Gamma Distribution with Parameters n and θ.            

If T~ Pareto (α, θ), then     (
 

 ⁄ )              ( )  

    and P= ∑     (
  

 
) 

    Gamma (n, ) with pdf 
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                                g(p) =  
  

  
         ;    p ≥0,  θ>0 

Consider,  

             E(
 

 
) = ∫
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 E(
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 is unbiased estimator for θ, P represents a complete sufficient statistics for θ. Thus, by 

theorem of Lehmann- Scheffe, the UMVUE of θ is given by  

         ̂       = 
   

 
                   

2.3 Minimum Mean Square Error Estimator 

The Minimum Mean Squared Error estimator (MinMSE) can be found in the class of estimators of the form  
 

 
                       

             

(2.3.1) 
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Using maximum likelihood principle, we get 
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Substituting the equations (2.2.1), (2.3.3) in (2.3.2), we have 

                   c = 
  *(

 

 
)+

 [(
 

 
)
 
]
 =

 

   
  

(   )(   )

 

        c = (n-2) 

Therefore,  

        ̂        = 
   

 
    (from 2.3.1)                

(2.3.2)  
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2.4 Mean Squared Error (MSE) for three classical estimators  

2.4.1 MSE for Maximum Likelihood estimation 

 MSE ( ̂    ) =     (
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(2.4.1) 

2.4.2 Mean Squared Error for Uniformly Minimum Variance Unbiased Estimator   
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2.4.3 Mean squared error for Minimum Mean Square Error   
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(2.4.3)    

From equations (2.4.1), (2.4.2) and (2.4.3), we have   

MSE ( ̂       ) ≤ MSE ( ̂      ) ≤ MSE ( ̂    )             

(2.4.4)  
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From (2.4.4) it is observed that the Minimum Mean Squared Error (MinMSE) is the best estimator than the 

Maximum Likelihood Estimator (MLE) and the Uniformly Minimum Variance Unbiased Estimator (UMVUE). 

 

2.5 Bayesian Estimation and Bayes Risk using non – informative prior 

Bayesian estimation is an estimation of an unknown parameter   that minimizes the expected loss for all 

observations         The Bayes approach is an average case analysis by taking the average risk of an estimator 

for all the parameters involved in the distribution under study. Suppose we take the prior probability 

distribution  , on the parameter space   then the average risk is defined as  

  ( ̂)      [ (   ̂)] 

and the Bayes risk for a prior   is the minimum that the average risk can achieve  

 ̂   [  ( ̂)]
 

   
 

In Bayesian analysis, when prior knowledge about the parameter is not available, it is possible to make use of 

the non-informative prior. Since we have no knowledge on the parameters, we may use Jeffrey’s prior which is 

the square root of the Fisher information matrix of parameter per observation. 

 

The Jeffrey’s prior is defined as 
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Assuming that              be the n independent observation which follows the Pareto Type I Distribution 

with probability density function, given in(1.1)  the value of   is known and   is the only unknown parameter, 

we shall obtain the posterior probability density function for   using Jeffrey’s prior distribution. 

Posterior probability density (pdf) function for   is 
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 The posterior density function of Jeffrey’s prior is  

 (             ⁄ )  
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III. Bayes estimation and Bayes Risk under different loss function 

3.1.1 Bayes estimator under the Squared Error Loss function (SELF) 

The SELF is defined as  

        ( ̂  )
    

 ( ̂   )
 
 

The Bayes estimator under SELF is 
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(3.1.1) 

 

3.1.2 Bayes Risk under Squared Error Loss Function  

The Bayes risk  (   ̂) under SELF is defined as the expected loss under SELF     
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3.1.3 Bayes Estimation under Quadratic Loss Function  

The quadratic loss function is defined as  
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3.1.4 Bayes Risk under Quadratic Loss Function 

The Bayes risk  (   ̂) under the quadratic loss function is defined as the expected loss under QLF  
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3.1.5 Bayes Estimation under Precautionary Loss Function  

The Precautionary Loss Function is defined as 
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The Bayes estimator under a precautionary loss function is defined as  

 ̂      (  ) 
 
  

Where,  (  )  ∫    (             ⁄ )  
 

 
 

                            =∫    

 

  

√ 
           

                                 
  

√ 
∫        

 
       

 

 

 

                            
  

√ 

√   

     

                      (  )  
 

√ 

(   ) √ 

   

                      ̂    *
 (   )

  +
   

        

 (3.1.6) 

 

https://iarjournals.com/


American Journal of Sciences and Engineering Research wwww.iarjournals.com 

 

532 www.iarjournals.com 

 

3.1.6 Bayes Risk under Precautionary Loss Function  

The Bayes Risk   (   ̂) under Precautionary Loss Function is defined as the expected loss under PLF 
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3.1.7 Bayes Estimation under Entropy Loss Function 

The Entropy Loss Function is defined as 
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      Where    
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   Where minimum occurs at  ̂   . Also the loss function  ( ) has been used in the original form having p 

=1. 
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3.1.8 Bayes Risk under Entropy Loss Function  

The Bayes risk  (   ̂) under entropy loss function is defined as the expected loss under ELF, which is given by 
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IV. Bayes estimation and Bayes risk using Informative prior 

Assuming that   has informative prior as exponential prior which takes the following form 

 ( )  
 

 
   

 ⁄        

The posterior pdf of exponential prior is defined as  
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 The posterior pdf of exponential prior is  
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4.1 Bayes Estimation and Bayes Risk using informative prior under different loss function 

4.1.1 Bayes estimation under Squared Error Loss Function (SELF) 

The SELF is defined as  (   ̂)  ( ̂   )   

The Bayes estimator under squared error loss function is  
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4.1.2 Bayes risk under squared error loss function 

The Bayes risk  (   ̂) under SELF is defined as the expected loss under SELF  
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4.1.3 Bayes Estimation under Quadratic loss function 

The Quadratic loss function is defined as 
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4.1.4 Bayes risk under the quadratic loss function 

The Bayes risk  (   ̂)  under Quadratic loss function defined as the expected loss under QLF, 
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4.1.5 Bayes Estimation under Precautionary loss function 

The Precautionary loss function is defined as  
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Consider the risk function  (   ̂) to estimate the parameter   under quadratic loss function 
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 .1.6 Bayes Risk under Precautionary loss function 

The Bayes risk    (   ̂)  under precautionary loss function is defined as the expected loss under PLF  
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4.1.7 Bayes Estimation under Entropy loss function 

The entropy loss function is defined as 
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4.1.8 Bayes risk under Entropy Loss Function 

The Bayes risk  (   ̂)under entropy loss function is defined as the expected loss under ELF  
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V. Result and discussion 

5.1. Comparison of classical estimation 

In this study, we choose a sample size of n=25, 50 and 100 to represent the small median and large data set. 

The classical estimation of the shape parameter of the Pareto type I distribution using MLE, UMVUE and 

Minimum mean square error were obtained by using simulation technique  and presented in  table -5.1 

 

Table 5.1 Classical estimation of the shape parameter                                       

Form the table 5.1, it is observed that MiniMSE is the best among the other proposed estimators such as MLE 

and UMVUE. 
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5.2 Bayes estimation and Bayes Risk of the shape parameter of Pareto type – I distribution  

We choose a sample of size n = 25, 50, 75 and 100 to represent small, medium and large data set. The Bayes 

risk of the shape parameter for Pareto type – I distribution is estimated using non – informative prior 

(Jefferey’s prior) and informative prior (Exponential prior) under different loss functions.  The value of shape 

parameter                    . The results are obtained through simulation technique and presented in 

the table form (5.2.1) to (5.2.8). 

 

5.2 Bayes estimation and Bayes Risk of the shape parameter of Pareto type – I distribution  

Table. 5.2.1 Bayes Estimation under Square Error Loss Function for different values of   and  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.5.2.2. Bayes Risk under Square Error Loss Function for different values of   and  . 
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Table 5.2.3. Bayes Estimation under Quadratic Loss Function for different values of   and  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 5.2.4. Bayes Risk under Quadratic Loss Function for different values of   and  . 
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Table. 5.2.5. Bayes Estimation under Precautionary Loss Function for different values of   and . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 5.2.6. Bayes Risk under Precautionary Loss Function for different values of   and    

 

 

 

 

 

 

 

 

 

Table.5.2.7. Bayes Estimation under Entropy Loss Function for different values of   and   . 
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Table. 5.2.8. Bayes Risk under Entropy Loss for different values of   and   . 

 

 

 

 

 

 

 

 

 

 

VI. Conclusions 

In this study, we obtained the classical estimators such as MLE, UMVUE and MiniMSE and the Bayes risk 

of shape parameter of Pareto type –I distribution using non–informative and informative priors under various 

loss functions through simulation technique. By comparing the classical estimation, the MiniMSE is the best 

one among the all others namely MLE & UMVUE. The Bayes risk of the shape parameter under QLF is the least 

one among all other loss functions, which are proposed for this study. It is also observed that when the sample 

size is increased, the Bayes risk is decreased. Finally, it is found that the MiniMSE is the best one of the 

proposed classical estimators and also found that the performance of bayes risk of the shape parameter of 

Pareto type –I model using informative prior under Quadratic loss function is minimum than the other 

proposed loss functions. 
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