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ABSTRACT: 

The effective power of an image as a teaching tool is widely known. Furthermore, when a graph is also used to 

describe a physical phenomenon along with its mathematical underpinning the explanation always seems better 

and clearer. Searching for mathematical formulas which graphs match or closely resemble a particular physical 

behavior is a desirable pedagogical tool to convey the essence of a technical work and make it more 

understandable. In this respect, mathematical formulas and their graphs serve not only as a channel to teach 

complex phenomena but as a shortcut to avoid talking separately about diverse cases of similar nature. In this 

paper the authors consider the solution of a free-underdamped differential equation and its computer-generated 

graph to study the directivity of a loudspeaker. 

--------------------------------------------------------------------------------------------------------------------------------------------------- 

 

I. INTRODUCTION 

Using the graph of a particular mathematical function to resemble an acoustical event has always been a 

valuable aid to researchers when studying and measuring acoustical phenomena. When testing the differences 

of microphones and loudspeakers is very common to make use of polar coordinates. For example, to study a 

microphone's pattern of sensitivity engineers test its output signal by measuring it at different angles (see Figure 

1). That is, an acoustical signal is sent to the microphone while varying the source angle and measuring the 

corresponding output level. Microphone sensitivity is used to determine the pick-up level of the sound from 

different directions. A curve frequently used to describe a directional microphone – it could be omnidirectional, 

bidirectional, or unidirectional - is that of a cardioid. Figure 2 shows the graph of a typical cardioid generated 

using Maple™.  

 
Figure 1 Method to determine the sensibility pattern of a microphone. 
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Figure 2 Computer-generated graph of a cardioid. 

 
Comparing the computer-generated graph of Figure 2 with the ones provided by a manufacturer - determining 

the sensitivity of a Shure™ SM-57 microphone - we can observe their similitude (See Figure 3) [1].  

 

 
Figure 3 Polar pattern of a Shure™ SM-57 Microphone 

 
Another example of a mathematical formula that can be used to simulate an acoustic event such as the 

reverberation time in a closed-model room is given by the function f(x) = xsin(1/x) (See Figure 4) [2].  

 

 
Figure 4 Curve that simulates a reverberation time of a closed-model room. 
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Comparing the preceding graph with the one of a real test of reverberation time (See figure 5) we can observe 

again their similarities [3].  

 

 
Figure 5 Measure of reverberation time in a closed-model room. 

 
For the remaining of this article, we will consider first the general solution of a second-order homogeneous 

differential equation using an algebraic method [4]. Second, we will use this method on a sample differential 

equation and, from this solution, generate a solid of revolution that will be used to illustrate its relation to the 

response of a loudspeaker. These two activities will allow us to exemplify how a formula, its graph, and its 

mathematical underpinning can be used to clarify the understanding of a physical event.  

 

1. GENERAL RESOLUTION OF A SECOND-ORDER HOMOGENEOUS DIFFERENTIAL EQUATION BY AN ALGEBRAIC 

METHOD 

The general form of a second-order homogenous differential equation where a, b, and c are arbitrary constants 

is as follows  

 

𝑎𝑦" + 𝑏𝑦′ + 𝑐𝑦   = 0 (1) 

 

For this type of equation, the function y = emx is a solution as we will show next. The first and second derivatives 

of this function are 

 

𝑦′ = 𝑚𝑒𝑚𝑥  𝑦" = 𝑚2𝑒𝑚𝑥 

 

Substituting these last two expressions and the value of the function back into (1) we obtain  

 

𝑎 (𝑚2𝑒𝑚𝑥) + 𝑏(𝑒𝑚𝑥) + 𝑐(𝑒𝑚𝑥) = 0 

 

Factoring common terms, we can write the equality as 

 

 

𝑒𝑚𝑥(𝑎𝑚2 + 𝑏𝑚 + 𝑐) = 0  (1-A) 

 

Because emx  0 for any real x, equation (1-A) is satisfied when m is a root of its auxiliary quadratic equation. 

That is, when  

𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0   (2) 

 

Without loss of generality, we can assume that the roots 𝑚1, 𝑚2 of (2) are conjugate complex numbers. Thus, 

let’s assume that 
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m1 =  + i   and   m2 =  - i 

 

where 𝛼, 𝛽  are real numbers and 𝛽 > 0.  

 

Replacing m1 and m2 in y = emx   we can say that a 

 

 general solution for (1) is of the form 

 

𝑦 = 𝑐1𝑒(𝛼+𝑖𝛽)𝑥 + 𝑐2𝑒(𝛼−𝑖𝛽)𝑥     (3)  

 

  Distributing the exponents and applying the exponential properties we can write 

 

𝑦 = 𝑐1𝑒𝛼𝑥𝑒𝑖𝛽𝑥 + 𝑐2𝑒𝛼𝑥𝑒−𝑖𝛽𝑥        (3-A)   

 

To avoid working with complex exponentials we can use Euler’s formula  𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃    (𝜃 is real) and  

the fact that cos(-𝛽x) = cos(𝛽x) and sin(-𝛽x) = - sin(𝛽x). Therefore, we can rewrite 𝑒𝑖𝛽𝑥  and 𝑒−𝑖𝛽𝑥  as shown next. 

 

𝑒𝑖𝛽𝑥 = cos 𝛽𝑥 + 𝑖 sin 𝛽𝑥  and  𝑒−𝑖𝛽𝑥 = 𝑐𝑜 𝑠 𝛽𝑥 − 𝑖 𝑠𝑖𝑛 𝛽𝑥 

 

replacing these values in (3-A) and factoring common terms we can obtain 

 

𝑦 = 𝑒𝛼𝑥[𝐶1(cos 𝛽𝑥 + 𝑖 sin 𝛽𝑥) + 𝐶2(cos 𝛽𝑥 − 𝑖 sin 𝛽𝑥)] 

 

Applying the distributive law to this last equality we have that 

 

𝑦 = 𝑒𝛼𝑥(𝐶1 cos 𝛽𝑥 + 𝐶1𝑖 sin 𝛽𝑥 + 𝐶2 cos 𝛽𝑥 − 𝐶2𝑖 sin 𝛽𝑥) 

 

Factoring the common terms results in 

 

𝑦 = 𝑒𝛼𝑥[(𝐶1 + 𝐶2) cos 𝛽𝑥 + (𝐶1𝑖 − 𝐶2𝑖) sin 𝛽𝑥] 

 

From this result, we can say that 𝑒𝛼𝑥cos(𝛽x) and 𝑒𝛼𝑥sin(𝛽x) are real solutions of (1) over the range (-,+). 

Renaming (C1 + C2) and (C1i - C2i) as c1 and c2 respectively, the general solution of (1) can be rewritten as 

 

𝑦 = 𝑒𝛼𝑥(𝑐1 cos 𝛽𝑥 + 𝑐2 sin 𝛽𝑥) 

 

1.1 GENERAL SOLUTION OF A SECOND-ORDER HOMOGENEOUS DIFFERENTIAL EQUATION OF A FREE 

UNDERDAMPED SYSTEM 

The general form of a second-order homogeneous differential equation of a is [5] 

 
𝑑2𝑥

𝑡𝑑2 + 2𝜆
𝑑𝑥

𝑑𝑡
+ 𝜔2𝑥 = 0   (5) 

 

Following the procedure of Section 1.1 and applying it to equation (5) where a = 1, b = 2, and c = 2, we can 

write directly its associated auxiliary quadratic equation as 

 

m2 + 2m + 2 = 0     (6) 

 

using the general formula for solving (6) and performing the basic substitutions we obtain 
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−2𝜆 ± √(2𝜆)2 − 4(𝜔)2

2
 

 

simplifying this last expression, the roots are: 

 

𝑚1 = −  + √𝟐 − 𝟐          𝑚2 = −  − √𝟐 − 𝟐 

  

or more succinctly  

−𝜆 ± √𝜆2 − 𝜔2 

 

Also as indicated in [5], for a free-underdamped system it is necessary that the discriminant be of the following 

form 


2 − 2 < 0 

 

Therefore, the roots of the auxiliary equation will be conjugated complex and can be written as  

 

𝑚1 = −  + √𝟐 − 𝟐 𝒊         𝑚2 = −  − √𝟐 − 𝟐  𝒊 

 

In consequence, the general solution for (5) is  

 

𝑥(𝑡) = 𝑒−𝜆𝑡[𝑐1 cos √𝑤2 − 𝜆2 𝑡 + 𝑐2 sin √𝑤2 − 𝜆2𝑡] 

 

1.2 A LOUDSPEAKER AS AN UNDERDAMPED SYSTEM 

A loudspeaker can be considered as a mass-spring-damper system. Figure 6 shows a simplified view of a 

loudspeaker [6].  Jointly, the cone (the body) with the voice coil represents the moving mass. The suspension, 

formed by the spider and the ring surround, keep the moving parts in place (with a degree of freedom) and 

provides the rigidity, mechanical damping, and resistance of the system. The general equation for a system of 

this type is given by the following second-order differential equation 

 

𝐹 = 𝑀
𝑑2𝑥

𝑑𝑡
+ 𝐷

𝑑𝑥

𝑑𝑡
+ 𝐾𝑥 = 0       (7) 

 

where F is the force (pressure) applied to the voice coil, x is the cone displacement, K the suspension stiffness, 

M is the moving mass, and D the mechanical damping or resistance. 

 

 
Figure 6 Low frequency loudspeaker parts. 
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1.4 OUR SAMPLE DIFFERENTIAL EQUATION 

In the pedagogical spirit of this paper, let’s consider the following particular case of the aforementioned 

equation (7) 

 
𝑑2𝑦

𝑑𝑥
+ 2

𝑑𝑦

𝑑𝑥
+ 26𝑦 = 0   (8) 

 

Applying the algebraic method for the resolution of its associated auxiliary quadratic equation to (8) we have 

 

𝑦 =
−2±√22−4(1)(26)

2(1)
  (9) 

 

Performing operations results in 

 

𝑦 = 1 ±
√100 √−1

2
 

Simplifying this last expression, we obtain   

 

𝑦 = −1 ± 10𝑖 

 

1.4.1  SOLVING OUR SAMPLE DIFFERENTIAL  EQUATION  

We now demonstrate that  

 

𝑦 = 𝑒−𝑥(cos 5𝑥 + sin 5𝑥)  

 

is a solution of (8).  Following a similar procedure to solve equation (1) we proceed as indicated next.  

 

 

First we obtain the first derivative, 𝑦′ and double it. The result of these operations is 

 

2𝑦′ = −2𝑒−𝑥(cos 5𝑥 + sin5 𝑥) + 2𝑒−𝑥(−5 sin5 𝑥 + 5 cos 5𝑥) 

 

2𝑦′ = −2𝑒−𝑥 cos 5𝑥 − 2𝑒−𝑥 sin 5𝑥 − 10𝑒−𝑥 sin 5𝑥 + 10𝑒−𝑥 cos 5𝑥 

 

2𝑦′ = 8 𝑒−𝑥cos 5𝑥 − 12𝑒−𝑥 sin 5  (9) 

 

The second derivative, 𝑦", is shown next 

 

𝑦" = 𝑒−𝑥(cos 5𝑥 + sin5 𝑥) − 𝑒−𝑥(− 5sin 5𝑥 + 5cos5 𝑥)

− 𝑒−𝑥(− 5sin 5𝑥 + 5cos 5𝑥) + 𝑒−𝑥(−25 cos5 𝑥 − 25 sin5 𝑥) 

 

𝑦" = 𝑒−𝑥 cos 5𝑥 + 𝑒−𝑥 sin 5 𝑥 + 5𝑒−𝑥 sin 5𝑥 − 5𝑒−𝑥 cos 5𝑥 + 5𝑒−𝑥 sin 5 − 5𝑒− cos 5 − 25𝑒−𝑥 cos 5𝑥

− 25𝑒−𝑥 sin 5𝑥 

 

𝑦" = −34𝑒−𝑥 cos 5𝑥 − 14𝑒−𝑥 sin 5𝑥 (10) 

 

Replacing (9) and (10) back into (8) results in 

 

𝑦" + 2𝑦′ + 26𝑦 = −34𝑒−𝑥 cos 5𝑥 − 14𝑒−𝑥 sin 5𝑥 + 8𝑒−𝑥 cos 5𝑥 − 12𝑒−𝑥 sin 5𝑥 + 26𝑒−𝑥 cos 5

+ 26𝑒−𝑥 sin 5𝑥 = 0 
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As an aid to the reader, the following table shows the coefficients of the sine and cosine terms of the previous 

expression and their algebraic sum (Total column). 

 

 

    Total 

cos(5x) -34 8 26 0 

sin(5x) -14 -12 26 0 

 

 

II. GRAPHING OUR SOLUTION WITH MAPLE 

One of the main goals of this work is on obtaining mathematical formulas and their graphs that simulate 

a known physical event. To illustrate this purpose using a variant of the previous example we have manipulated 

the exponential variable (parameter) of (11) to obtain high and low-mid frequency responses. 

 

2.1 EMULATING A HIGH FREQUENCY RESPONSE 

When plotted, as shown in Figure 7, the curve generated by the function  

  

𝑦 = 𝑒−2𝑥(cos 5𝑥 + sin 5𝑥)  (11) 

 

resembles a high frequency response. 

  

 
 

Figure 7 Plot for function y = e-2x(sin(5x) + cos(5x)) 

 

The solid of revolution for equation (11) obtained by using the Maple Calculus-1 tutorial of Figure 8 is 
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Figure 8 Solid of revolution for function 

 
y = e-2x(sin(5x) + cos(5x)) 

 

Let’s consider now the computer-generated graph of Figure 8 with a real one provided by a manufacturer (See 

Figure 9). Comparing the shape of the curve of the red solid of revolution (See Figure 8) with the light-blue shape 

at the center of Figure 9 we can see that the light-blue curve corresponding to a frequency of 5000 Hz resembles 

the vertical component of Figure 8. 

 
Figure 9 Loudspeaker directivity polar pattern at different frequencies [7]. 

 
Figure 10 shows a loudspeaker spectrum in 3d. from this graph we can observe the variation of the spectrum if 

the frequency is lowered from 5000Hz to 3500Hz.  
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Figure 10 A 3D Loudspeaker frequency spectrum at 3500Hz [8]. 

 
2.2 EMULATING A MID-LOW FREQUENCY RESPONSE 

For our next example let’s use the function shown below to mimic a frequency response. Figure 11 shows the 

plotting of this function. 

 

y = e--0.9x (Sin(5x) + Cos(5x)) 

 

 Figure 12 shows the solid of revolution generated by this function using the Maple.  

 
Figure 11 Graph of function y =  e--0.9x (sin(5x) + cos(5x)). 
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Figure 12 solid of revolution generated for function 

 
y = e--0.9x (Sin(5x) + Cos(5x)). 

 

If we now compare the graphic of Figure 12 with the one of a regular Mid-Low frequency loudspeaker (See Figure 

13) we do not find similarities like we did in section 2.1. The reason for this is that lowering the frequency makes 

the sound less directional. Notice that the main vertical lobes in Figure 13 do not have narrow shapes. But if we 

take a graphic of loudspeakers of latest technologies or its arrays, like correlated acoustical sources, Line Array 

Systems or Cardioid Arrays on subwoofers (See Figure 14) we find again the similarities with the narrow shapes 

in the center of the spectrum.    

 
Figure 13 Vertical and horizontal polar pattern of a JBL™ loudspeaker at 2 KHz [9]. 
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Figure 14 Spacing effects – “steering” a coupled line source arrays of loudspeakers [10]. 

 
III. OTHER APPLICATIONS 

The use of second-order homogeneous differential equations of the type considered in this work to 

explain graphically physical events is not limited to acoustics phenomena only. As shown in Figure 15 the same 

ideas can be applied to studying the mechanics of a trampoline [11]. Additional areas of applications to consider 

may include fluid mechanics such as those of hose or spray guns (See Figure 16).  

 
Figure 15 Comparison between theoretical results and accelerometer data for bounces on a 1.3 mt. circular 

trampoline (Sampling Rate 25Hz) 

 

 
Figure 16 Coating thickness profiles along the x-axis for different θ values when L = 30 mm [11]. 

 
IV. CONCLUSION 

The results obtained in this work show that use of differential equations to better explain physical events 

are helpful. Firstly, differential equations can be used then as a pedagogical tool with a four-fold purpose. First, 

as a methodology to exemplify the use of mathematics to find or illustrate similarities between simulated and 
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real physical phenomena. Secondly, it may serve as a stimulating factor for students who, through the use of 

graphs and differential equations, can make their research experience more enjoyable. Thirdly, by obtaining 

ratios between the equation values to radius, heights, radiations, angles, frequencies, and so on, this approach 

can be useful too. Fourthly, it is important to mention that other areas of applications, where computer graphs 

and animations may provide valuable insights, may include - but not limited to - fluid mechanics, illumination, 

air flow, gas expansion etc.  Finally, we want to encourage the use of differential equations for different goals 

and uses for which they were originally created because it may open doors to new uses or discoveries. 
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