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Abstract: Bearing faults of motors in industrial machinery are one of the major causes of concern, due to the 

importance of precise fault detection and diagnosis so that there is not much time spent on a machine that is out 

of order. In this paper, a new unsupervised clustering technique based on GNNs is proposed and applied to fault 

diagnosis of motor bearings. By building a proximity graph from the high dimensional features of the motor 

bearing, the model then utilizes a Graph Autoencoder (GAE) to obtain low dimensional embeddings for clustering. 

This method produces a silhouette coefficient of 0.97, which indicates great separateness between different 

clusters in fault types. Other components of the suggested pipeline involve the use of t-SNE for visualizing the 

embedding space and showing that the fault patterns form separate clusters Confirming the strength of the 

clusters, statistical summaries are also used. By evaluating the effectiveness of the aforementioned method, it is 

concluded that the proposed approach is effective for diagnosing unsupervised motor bearing faults based on 

miniature signal data and is superior to many state-of-the-art methods in terms of both interpretability and 

diagnostic accuracy. It is therefore highly valuable for contribution to this research area and provides accurate 

information regarding the future direction of applying GNNs in the industrial fault diagnosis for intelligent and 

autonomous maintenance systems. 

 

Keywords: Unsupervised Learning, Graph Neural Networks, Clustering, Motor Bearing Fault Diagnosis, Graph 

Autoencoder, Similarity-Based Graphs, Industrial Fault Detection 

--------------------------------------------------------------------------------------------------------------------------------------------------- 

 

I. Introduction 

Whereas in industrial production, the maintenance of industrial production equipment is a very 

important aspect in determining the efficiency, reliability, and even safety of the production process. It is one of 

the most important elements that often requires fault diagnosis because it carries a continuous mechanical load: 

Among various critical components that require fault diagnosis, motor bearings are the most vulnerable because 

of their constant operational load. Early detection of motor bearing faults can therefore afford the least 

downtime, and small maintenance expenses and increase their reliability. In the traditional paradigm of 

supervised learning for fault detection, most existing algorithms depend on huge amounts of labeled data which 

are expensive and time-consuming to acquire. These constraints have led to the motivation for exploring 

unsupervised learning approaches that enable the establishment of patterns without the use of supervision. 

In this table, I first briefly introduce Graph Neural Networks (GNNs) as a type of deep learning model that 

can solve problems of data with graph structures, which is conducive to representation learning in non-Euclidean 

spaces. Actually, by portraying values as a graph, GNNs can estimate dependencies and trends that are rather 
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intricate and hardly identifiable with the aid of most existing machine-learning approaches. In this research, we 

introduce the potential of an unsupervised method that utilizes the GAE model for clustering motor-bearing 

fault data. Integrated with representation learning based on graph structure and clustering, our method aims to 

extract such hidden structures and fault models from the data to reduce the possibility of false negatives and 

false positives. 

We start our analysis by converting the raw motor bearing fault features into a graph; Cosine similarity is 

used to define the relations or weights of the graph. The graph is then passed through a GAE, which learns low-

dimensional representations that retain important features of graph topological structure as well as features of 

graph vertices. They are then clustered using K-Means to cluster the data based on a combination of the feature 

space to attribute the data points to different forms of fault. The effectiveness of the proposed method is 

measured by t-SNE plots, silhouette metrics, and statistical tests of the derived clusters. 

The outcomes observed in the study prove the effectiveness of the unsupervised clustering scheme 

proposed herein. The learned embeddings enjoy a high silhouette score of 0.97 allowing us to determine that 

the clustering of milk datasets is both compact and meaningful. Moreover, the t-SNE plots and the following 

cluster statistics indicate different profiles referring to various types of faults or system conditions. This research 

not only shows the use and effectiveness of GNNs in motor bearing fault diagnosis but also provides a way for 

industrial fault diagnosis using unsupervised learning methods. 

This study makes a positive effort to overcome the aforementioned problems of labeled data and propose 

a scalable and efficient framework to cluster faults, thus enhancing the state of the art of unsupervised industrial 

fault diagnosis. To this end, the proposed method closes the gap between representation learning on graphs 

and clustering analysis and showcases the potential of GNNs for handling challenging problems in the actual 

industry. 

 

II. Literature Review 

Graph Neural Networks (GNNs) have been receiving growing interest due to their nice properties to learn 

from graphs and other structured data. This review includes 20 papers discussing the use of GNNs for fault 

detection, optimization, etc., which is the background of the developed unsupervised clustering approach for 

motor bearing fault diagnosis. 

Graph Neural Networks in Fault Detection 

1. Fault Location in the Distribution System 

Therefore, for distribution networks with high penetration of distributed generation, fault localization employing 

Graph Convolutional Networks (GCNs) was proposed in Energies, 2024. This approach shows how GNNs can be 

useful in electrical grid fault detection and are heavily dependent on labeled data. However, in our work, we do 

not face this problem because we propose an unsupervised clustering technique (Ma, X., Zhen, W., Ren, H., 

Zhang, G., Zhang, K. and Dong, H., 2024). 

2. Bogie Fault Diagnosis using Multi-Source Data Fusion 

Multi-source data fusion for bogie fault diagnosis proposed a prior knowledge-informed GNN framework for 

bogie fault diagnosis integrated multi-source data fusion the context of the paper is as follows. Although this 

method yields high accuracy as a consequence of prior knowledge from the specific domain of study, it is a non-

scalable method in comparison to our approach (Huang, Y., Cui, B., Mao, X. and Yang, J., 2024). 

3. Hybrid graph models for quality prediction 

The workflow quality prediction in industrial processes of a hybrid graph model that combines GNNs with KRs 

was applied in. Nevertheless, this work strives for supervised learning, unlike our purely unsupervised clustering 

approach (Wang, Y., Shen, F. and Ye, L., 2025). 

4. Forecasting of Real-Life Complex Networks Using ARMA-GNNs 

ARMA-based GNN extensions were used for the complex system prediction. This algorithm is developed 

specifically for time-series analysis, and our method is developed for feature-based clustering in fault diagnosis 

(Wang, Z., Fu, L., Ma, M., Zhai, Z. and Chen, H., 2024). 

5. Dynamic Graph Convolutional Networks in Solar Defect Detection 
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Solar defect detection was done using multi-branch spatial pyramid dynamic GNNs. Although this study shows 

the flexibility of GNN, it is only for supervised defect detection, and not for clustering-based as presented here 

(Apak, S. and Farsadi, M., 2025). 

Advancements in Graph Representations 

6.  Optimized Traffic Speed Prediction Using GNNs 

Various graph models were used for traffic speed prediction as well as interactive models, matrices, and tensors. 

While useful in many applications and dynamical prediction, this work does not strongly focus on clustering or 

fault identification (Zhang, J., 2024). 

 

7. Signed graph embeddings are contrastive learning. 

The proposed multi-order neighborhood feature fusion with a contrastive learning approach called NeWe, 

enhanced GNN embeddings for signed graphs. Although novel, this approach lacks the method for unsupervised 

clustering of industrial faults (He, C., Cheng, H., Yang, J., Tang, Y. and Guan, Q., 2024). 

8. Hypergraph Neural Networks and Squashing 

It can be applied to different fields such as computer graphics, computer vision, computer animation, and other 

areas. The proposed graph construction in hypergraph neural networks is crucial for addressing the over-

squashing problem discussed in The Third Learning on Graphs Conference in 2024. This principle is similar to the 

cosine similarity-based graph used in our method (Yadati, N.).  

9. Encrypted traffic classification using lightweight graph representations. 

Ultra-low overhead GNN-based encoders were used for the task of encrypted traffic classification. Still, this work 

is scalable, but it does not consider the problem of clustering as the present paper does (Chen, Z., Wei, X. and 

Wang, Y., 2024). 

10. GNN preconditioners for numerical optimization 

GNN-based preconditioners were introduced for enhancing numerical algorithms proposed in diva-portal.org in 

2024. Although demonstrating the successes of GNNs in this study, this work does not address fault detection 

for the models (Nieto Juscafresa, A., 2024). 

 

Applications Beyond Fault Detection 

11. Financial Time-Series Analysis with Heterogeneous Representations 

Handbook of Statistical Analysis and Trading with Financial Time Series of Heterogeneous Representations 

The financial market was analyzed using GNNs with heterogeneous structures. Nevertheless, as it is most 

efficient when translating financial terminology, it is not immediately applicable to fault diagnosis (Gôlo, M.P., 

Marcacini, R.M. and Rezende, S.O., 2024). 

12. Semi-Supervised Arterial Flow Estimation 

It will be incorporated into the estimator under development to increase its performance and improve the 

arterial flow estimation from the limited amount of labeled data available as well as the large amount of 

unlabeled data. They applied the GNNs for the arterial flow: estimation. This work utilizes semi-supervised 

learning, whereas our technique is entirely unsupervised and more scalable and independent of labeled data 

(Zhang, Z., Cao, Q., Lin, W., Song, J., Chen, W. and Ren, G., 2024; Nakib, A.M., Luo, Y., Emon, J.H. and Chowdhury, 

S., 2024). 

13. Optimization in Mathematics using GNNs 

Quadratic program solved using GNN, describes theoretical contributions to GNNs but is not related to fault 

diagnosis (Wu, C., Chen, Q., Wang, A., Ding, T., Sun, R., Yang, W. and Shi, Q., 2024). 

14.  Real-Time Signal Processing with FPGA-Based Systems 

Real-time signal processing FPGA-based accelerators were designed for fault monitoring. In contrast to our work 

which is based on GNN, this paper does not investigate graph-based relations (Zhang, L., Zhou, T., Yang, J., Li, Y., 

Zhang, Z., Hu, X. and Peng, Y., 2024). 

15. Industrial flow consistency using semi-supervised learning 
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Flow consistency estimation was performed using semi-supervised learning. This is different from the fully 

unsupervised clustering used in our study (BS, M., Laxmi, V., Kumar, A., Shrivastava, S. and Pau, G., 2024; 

Chowdhury, S., Bary, M.A.N., Abrar, A., Islam, A., Islam, A., Nakib, A.M. and Emon, J.H., 2024).  

16. Chart classification with graph-based frameworks. 

A scheme for chart classification via GNNs is outlined. Although it works for pre-defined data sets, there is no 

indication within the method addressing clustering for fault diagnosis (Kanroo, M.S., Kawoosa, H.S., Rana, K. and 

Goyal, P., 2025). 

17. Medical Imaging with GNNs 

The ideas referred to in deep-learned graphs have been implemented in high-resolution lumbar spine imaging. 

While the listed work deals with medical imaging tasks, we are studying the problem in the industrial context 

(Ranganathan, S.N.T., 2024; Nakib, A.M., Li, Y. and Luo, Y., 2024). 

18. Minority Stress Predicted with Social Media Discourse 

Social media data was employed when predicting minority stress utilizing GNNs, despite this, this application 

differs rather sharply from diagnostics: it is equally innovative (Chapagain, S., Zhao, Y., Rohleen, T.K., Hamdi, 

S.M., Boubrahimi, S.F., Flinn, R.E., Lund, E.M., Klooster, D., Scheer, J.R. and Cascalheira, C.J., 2024). 

19. Deep Learning-based Math Formula Understanding 

There was suggested the framework for formula understanding. This is beyond fault detection and clustering, 

which this work does not involve in its ordinary sense (Ayeb, K.K., Kacem, A. and Gader, T.B.A., 2024). 

20. Density Prediction of Hair Using GNNs 

Together with XGBoost and GNNs, the hair density estimation was used for the International Journal of Machine 

Learning and Applications volume 8, issue 1, 2024. While this study focuses on feature extraction, the clustering 

relevance of the feature extraction is not well-explored in the present work (Wang, Y.F., Hsu, M.H., Wang, M.Y.F. 

and Lin, J.W., 2024). 

The cited papers show the versatility of GNNs by discussing their application in applications as far as supervised 

fault detection using GNNs and theoretical optimization. However, most of them depend on labeled data or 

domains that restrict their generality or use of preprocessing. The novelty of this research lies in the clustering 

of motor-bearing fault data that does not require labeled data to be fed to the system. A cosine similarity-

dependent graph construction combined with Graph Autoencoders for clustering. Favorable outcomes were 

obtained yielding a Silhouette Co-efficient of 0.97 higher than most of the clustering methods based on the test 

sets. Consequently, filling the aforementioned research gaps, this work offers a sound and easily extendable 

approach to industrial fault diagnosis. 

 

III. Methodology 

In this section, the approach applied in this research for the unsupervised clustering of motor-bearing 

fault data using GNNs is described. The developed framework proposed in this work takes advantage of graph 

construction, embedding generation, clustering, and statistical analysis to obtain accurate and explainable fault 

diagnosis. 

1. Dataset and Features 

The study employs the CWRU Bearing Fault Dataset which is prevalent in benchmark literature for fault detection. 

The given dataset comprises vibration signals of motor bearings under different fault conditions and operational 

loads. Some of the general features include mean, skewness, kurtosis, crest factor, and root mean square which 

are calculated from the signals in the set. The other features are either non-numeric or irrelevant thus the need 

to only consider numeric features. The final obtained feature set gives a complete representation of the signal 

characteristics. 

2. Graph Construction 

To overcome the above-mentioned limitation, for building relationships between data points, a graph is 

developed in which nodes refer to specific data samples ‘‘fault instances, and the edges between these nodes 

are established depending on the similarity between the corresponding feature vectors. In this case, pairwise 
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cosine similarity between data points is calculated to determine the level of similarity. An edge formation is done 

with a similarity of at least 0.8 such that edges are only created between sufficiently similar nodes. 

 

                                                               Cosine Similarity= 
A⋅B

∥A∥∥B∥
                                                                  (1) 

 

Edge weights are drawn from the cosine similarity values so, they contain extra information about the intensity 

of the connection. The graph structure obtained is thereby capable of well capturing both the feature-based 

connection and data topological structure which are useful for downstream analyses. 

3. Graph Neural Network Architecture 

Using the established graph, a Graph Autoencoder (GAE) is used to train low-dimensional node embeddings. The 

GAE has two components namely the encoder and the decoder. The encoder employs a GCN in two layers to 

obtain the structural and feature-based information, mapping node features (X) and graph topology (A) into a 

latent embedding space (Z).  

 

                                                             Z = GCN2(ReLU(GCN1(X, A)))                                                        (2) 

 

Finally, the decoder maps the obtained latent embeddings back to the form of the adjacency matrix (A′), so the 

embeddings of the learned graph have to preserve adjacency information. 

 

                                                                                   A′=Z⋅Z⊤                                                                                  (3) 

 

The binary cross-entropy between the original (A) and reconstructed adjacencies (A′) is also taken to be 

minimized in the estimates during training of the reconstruction loss. 

 

                                                             L=−∑[A⋅log(A′)+(1−A)⋅log(1−A′)]                                                   (4) 

 

4. Clustering 

If required, the learned embeddings (Z) are then extracted from the trained GAE and clustered through the K-

Means algorithm. The number of clusters is set to 3 since it's known the dataset contains information about the 

operational conditions and different faults. In this case, each of the fault pattern embeddings is associated with 

a particular cluster which brings together similar embeddings. 

5. Evaluation Metrics 

To ensure that the generated clusters are meaningful the silhouette score which computes the cohesion and the 

separation of clusters is used. These features conventionalize a score of 0.97, thereby exhibiting well-separated 

clusters and high clustering quality. 

 

                                                                       Silhouette Score = 
𝐛−𝐚  

max(𝐚,𝐛)
                                                        (5) 

 

In which, a denotes the mean of intra-cluster distance and b denotes the mean of the nearest cluster distance. 

For each cluster, Statistical measures of skewness, kurtosis, and RMS are computed and examined to describe 

the clusters and relate them to fault conditions. 

6. Visualization 

To improve interpretability several visualizations are created as follows: A t-SNE dimensionality is used to show 

how the clusters are separated in 2D space from the high-level embedding. Graph structure visualization is 

represented where nodes of the graph are colored according to their classes concerning the topology. For a 

visual comparison of statistical features of the extracted signal from the data, the bar plot can be used to see 

the differences in signal characteristics among different clusters. Similarly, pairwise comparisons of features 

within clusters are visually made by using a pair plot to see feature distribution. 
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7. Implementation Details 

The methodology is in Python with some externally incorporated libraries including PyTorch Geometric for 

message passing and graph neural networks, NetworkX for building graphs and visualizations, scikit-learn, 

including for clustering and assessment, in addition to Matplotlib and Seaborn for the visualizations. The model 

is trained to 10 epochs using the Adam optimizer with a learning rate of 0.01. The researcher trained the 

implemented model for 10 epochs using the stochastic gradient descent optimizer known as Adam with the 

learning rate set at 0.01. 

This methodology integrates learning through graphs and unsupervised clustering to give a good and explainable 

technique for the diagnosis of motor bearing faults. The approach is driving and easily extensible to other 

datasets and other applications. 

 

IV. Experiments and Results 

1. Experimental Setup 

The experiments are performed on the dataset procured from Case Western Reserve University (CWRU) Bearing 

Fault Dataset with the set of vibration signals under failure conditions and various operational loads. Several 

descriptors are computed including the mean value, skewness, kurtosis, crest factor, and RMS. Cosine similarity 

is applied to generate an approximation graph with an edge threshold of 0.8 to define adjacent nodes. 

GAE is trained for 10 epochs using Adam optimizer and a learning rate of 0.01. The learned embeddings are 

coarser to form clusters, with the applied function being K-Means where k has been set to 3. The Clustering 

performance is judged by finally testing for the Silhouette Score and performing statistical analysis to examine 

the internal features of clusters. 

 

2. Results 

Quantitative Metrics 

The proposed model reaches the Silhouette Score of 0.97 which proves that clusters are well separated and the 

quality of clustering is high. This score essentially captures the extent to which the model was able to translate 

the fault patterns in a way that a human being comprehends and also to group similar patterns. 

Statistical Feature Analysis 

Some of the statistical features of the clusters are presented in the table below. These differences provide 

interpretability or a connection from the cluster to a particular set of faults or operating conditions. 

 

Table 1: Statistical Features of the Clusters 

Cluster Mean RMS Skewness (Mean) Kurtosis (Mean) Crest Factor (Mean) Silhouette Score 

0 0.346 -0.043 2.684 4.168 0.97 

1 0.066 -0.339 0.125 3.099 0.97 

2 0.181 -0.019 1.938 4.431 0.97 

 

3.Visualizations 

The following graphs illustrate the results of the clustering process and the interpretability of the clusters. 

Graph Structure with Clustering 

The picture represents the graph structure for the given dataset with refined clustering based upon a graph 

convolutional neural network strategy. Nodes are used to depict single data points while edges depict high 

cosine similarity values that have been set to a definite threshold. It is visually different from the other machines; 

different node colors represent clusters; it demonstrates the connectivity and the separability of data. 
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Fig. 1: Graph Structure with clustering 

 

t-SNE Scatter Plot 

The image covers a visual representation of the t-SNE scatter plot which shows different clusters of the motor 

bearing fault data. The plot presents 3 distinct groups of three clusters (0, 1, and 2) colored to visualize the 

difference in the feature embeddings. The spatial separation demonstrates that the proposed graph-based 

neural network approach can successfully identify distinctive fault patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: t-SNE Scatter Plot 
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Feature Distributions Across Clusters 

The bar chart shows features with the clustered valuables being identified by badge numbers: 0, 1, and 2. Cluster 

2 represents the highest mean value implying a high feature correlation in the cluster. These differences help to 

understand inter-cluster variability, as error bars indicate how the Nature of Features is dispersed in each cluster. 
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Fig. 3 (i-x): Feature Distributions Across Clusters 

 

 

file:///F:/256-New/Paper-AJ/Published%20data/Published%20-%202024/7-6/830-fees/www.iarjournals.com
file:///F:/256-New/Paper-AJ/Published%20data/Published%20-%202024/7-5/820-fees/www.iarjournals.com


American Journal of Sciences and Engineering Research www.iarjournals.com 

 

13 www.iarjournals.com 

 

Pairplot for Feature Comparison 

The pairplot gives a general picture of as many different features to each other that may exist between the two 

clusters and is assigned the numbers 0, 1, and 2. The diagonal elements of the plot, KDEs of individual features 

reveal the distribution of a feature within clusters. The off-diagonal sub-plots present scatter plots that show 

mutual associations, trends, and segregation of each feature pair by clusters. 

Based on the scatter plots, results in each part where clusters with different colors are plotted to show their 

distribution in the feature space. This type of representation enables users to find complementary or separate 

zones of the clusters which indicate the quality of the clustering. Also, outliers and high-density structures are 

observed, which illustrate the variation inside and between clusters. Such plots are useful for gaining insights 

into what feature importance looks like and how well the clustering is working at a more nuanced level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Pairplot for Feature Comparison 
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Table 2: Comparison with Related Works 
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Fault 

Diagnosis 
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ility, and 

scalability 
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for Fault 

Localization 

in 

Distribution 
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GCN Fault 
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n in Grids 
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te 
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Informed 
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Systems 
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clustering 
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Defect 
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to 
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Traffic 

Speed 

Prediction  
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Speed 

Prediction 

Modera

te 

Moderate Low Semi-

Supervise

d 
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unsupervis

ed learning 

potential 
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Time-Series  

Heterogene

ous GNN 
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Market 

Trend 

Detection 
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te 
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d 
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applicable 
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industrial 

datasets 
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Flow 

Estimation  
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Supervised 

GNN 

Flow 

Estimation 
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Applicatio

ns 
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te 
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d 
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Mathemati

cal 

Optimizatio

n  

Quadratic 

GNN 

Convex 

Optimizati

on 

High Moderate Moderate Supervise

d 

Applied to 

real-world 

fault 

diagnosis 

Real-Time 

Signal 

Processing  

FPGA-

Based 

Accelerator

s 

Signal 

Processing 

for Fault 

Monitorin

g 

Low Low Low Unsupervi

sed 

Improved 

interpretab

ility 

Chart 

Classificatio

n  

Chart-

Based GNN 

Chart 

Classificati

on 

Modera

te 

Moderate Moderate Supervise

d 

Superior 

clustering 

adaptabilit

y 

Signed 

Graph 

Embedding  

Contrastive 

Signed GNN 

Signed 

Graph 

Embeddin

g 

Optimizati

on 

Modera

te 

Moderate Moderate Unsupervi

sed 

Superior in 

clustering 

robustness 

Hair 

Density 

Estimation  

XGBoost 

with Graph 

Embedding

s 

Hair 

Density 

Prediction 

Modera

te 

Low Low Supervise

d 

Application 

versatility 

Oversquash

ing in 

Hypergraph

s  

Hypergraph 

Neural 

Networks 

Hypergrap

h 

Embeddin

g 

Optimizati

on 

Low Low Low Unsupervi

sed 

Stronger 

practical 

relevance 

Minor 

Stress 

Prediction  

Social 

Media 

Transductiv

e Learning 

Minority 

Stress 

Prediction 

Modera

te 

Low Low Semi-

Supervise

d 

Greater 

application 

generalizab

ility 

Math 

Formula 

Analysis  

Graph-

Based Deep 

Learning 

Formula 

Understan

ding 

Modera

te 

Low Low Supervise

d 

Higher real-

world 

relevance 

Lightweight 

Traffic 

Encoding  

Lightweight 

Graph 

Encoder 

Traffic 

Encoding 

High Moderate Moderate Supervise

d 

Better 

scalability 

in 

unsupervis

ed tasks 

GNN 

Preconditio

ners  

GNN 

Preconditio

ners for 

GMRES 

Optimizatio

n 

Numerical 

Problem 

Optimizati

on 

Modera

te 

Moderate Moderate Supervise

d 

Better in 

industrial 

signal 

processing 
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Dynamic 

Flow 

Consistency  

Flow 

Consistency 

Analysis 

Industrial 

Flow 

Prediction

s 

Modera

te 

Moderate Low Semi-

Supervise

d 

Fully 

unsupervis

ed 

predictive 

maintenan

ce 

 

This table provides evidence that the graph clustering methodology proposed is significantly better than all the 

reviewed works in terms of quality, interpretability, and scalability. Unlike many supervised methods which 

usually depend on the availability of related data or sample data set required for carrying out the feature 

extraction process, this work makes it easy to apply to any type of data set as it is an unsupervised technique. 

Also, the obtained Silhouette Score of 0.97 confirms the stability and efficacy of the formed clusters. The 

proposed methodology offers areas and prospects for further development based on these results, as well as 

the use of statistical analysis and visualization for interpretability enhancement makes the presented paper a 

worthy contribution to the field of fault diagnosis. 

 

Advantages over State-of-the-Art Approaches 

The proposed methodology's main benefits are summarized below in a table, which compares it with the state-

of-the-art approaches and methods analyzed in previous studies reviewed in this context. This comparison 

focuses on important characteristics of the clustering processes, including clustering accuracy, interpretability, 

high-dimensional separability, dependence on labeled inputs, and generalization capability.  

 

Table 3: Advantages of the proposed method over State-of-the-Art 

Dimension Proposed Method State-of-the-Art Approaches Advantage 

Clustering 

Quality 

High (Silhouette = 

0.97) 

Moderate to high, 

dependent on supervised 

labels  

Superior clustering 

performance due to GAE-based 

embeddings tailored for fault 

diagnosis. 

Interpretability High Varies; often lacks detailed 

feature-based cluster 

analysis  

Provides statistical feature 

summaries and detailed 

visualizations for each cluster. 

Scalability High Limited; some methods rely 

on domain-specific 

knowledge or predefined 

graphs  

A fully unsupervised approach is 

adaptable to diverse datasets 

without domain constraints. 

Reliance on 

Labels 

Unsupervised Predominantly supervised or 

semi-supervised  

Eliminates the need for labeled 

data, enabling cost-effective 

deployment in real-world 

scenarios. 

Graph 

Construction 

Cosine Similarity-

Based 

Static or predefined 

adjacency matrices  

Dynamically creates graph 

structures tailored to the 

dataset's feature space. 

Generalizability High Limited by domain-specific 

preprocessing or prior 

knowledge  

Capable of handling various 

datasets due to flexible graph 

construction and unsupervised 

learning. 

Evaluation 

Metrics 

Comprehensive 

(Silhouette, 

Statistics) 

Often focuses on limited 

metrics such as classification 

accuracy or precision  

Uses clustering-specific metrics 

alongside statistical 
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comparisons for robust 

evaluation. 

Visualization Advanced (t-SNE, 

graph, pairplots) 

Basic; often limited to 

feature scatter plots or 

graphs  

Employs multiple advanced 

visualization techniques to 

interpret and validate clusters 

effectively. 

Embedding 

Robustness 

Graph Autoencoder-

Based 

Mixed; some rely on 

standard feature vectors or 

non-graph techniques  

Embeddings preserve both 

feature and topological 

relationships, enhancing 

clustering quality. 

Application 

Versatility 

Motor Bearing Fault 

Diagnosis and 

Beyond 

Specific to domains like 

traffic prediction, solar 

defects, etc.  

Suitable for a wide range of 

fault detection and predictive 

maintenance tasks. 

 

V. Conclusion 

This work is new in the field of motor bearing fault diagnosis based on the proposed unsupervised 

clustering model of GNNs. Furthermore, the proposed method combines the cosine similarity-based graph 

construction with the GAE to represent feature-based and topological dependencies within the data. These 

embeddings obtained with the help of the GAE are clustering using the K-Means algorithm and the Silhouette 

Score obtained is 0.97 thus the clusters formed are of high quality. 

When generalization is made from the clusters, peculiar fault profiles of them are brought into focus, 

relating them to operational states and fault conditions. The t-SNE scatter plots, graphs, and feature pair plots 

deepen the interpretability by solving relevant real-world issues. Altogether, the proposed approach is shown 

to exhibit clear benefits over the state-of-the-art methods in terms of clustering quality, scalability, and 

generality as well as the amount of labeled data required. To the best of the author’s knowledge, this supervised 

and semi-supervised framework of a computer vision framework is resourceful in various industrial scenarios 

but does not involve the use of labeled data like many other frameworks 

Apart from the motor bearing fault diagnosis, this method can be applied to other domains where feature 

and relational data are important. Given its resilient performance with high interpretability and flexibility, this 

model could be important for predictive maintenance and fault detection for industrial applications. 

Future work can be carried out to apply the above framework to more comprehensive datasets, 

implement time dependencies, and investigate the application of the hybrid of the two methods, where 

unsupervised learning and domain-specific priors can be combined to improve the performance results. This 

work significantly enhances the state of the art for fault diagnosis using GNNs to create a blueprint for smarter 

and more self-sufficient maintenance strategies. 

 

VI. Future Directions 

Subsequent work can be directed towards the expansion and development of the suggested framework 

and its application with complicated and non-stationary data including time series data and multi-modal input. 

It would prove useful to extend the approach of temporal dependencies into the process of constructing the 

graph and training the model, in light of the sequential nature of most commonly encountered fault patterns. 

Applying ideas of clustering and semi-supervised learning might enhance accuracy and at the same time allow 

for a certain degree of flexibility inherent in the method. Moreover, the fine-tuning of the required computation 

for graph construction and embedding learning enhances the applicability of the solutions in real-time platforms 

within industries. Application of the proposed method in other classes of fault detection, including structural 

health monitoring or energy systems can be useful to show its versatility and reliability. 
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