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Abstract 

Multiplicative G-metric space is an extension of the well-known multiplicative 
metric space with the structure of three arguments contains ordinary multipli- 
cation. We in this paper establish some fixed point theorems of multiplicative G-
metric spaces under some contraction conditions. These results are also given for 
the closed balls of multiplicative G-metric spaces. Initially we proved fixed point 
theorem by taking single map and then we extended our idea to two maps. At the 
end of this paper, we have given an application of Multiplicative G-metric space 
in traveling salesman problem for finding shortest path between different cities. 
We gave C++ Code for traveling salesman problem to find shortest path and 
shortest distance. Our technique for finding shortest path and shortest distance 
for traveling salesman is more robust. We also gave example to support our 
theorem. 

Keywords: Fixed point, Multiplicative G-metric space, Contraction mappings, 
Double map, traveling salesman problem. 
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1. Introduction 

Metric space known as the distance function was instigated by M. Frechet 
in 1906 [1]. Over two decades, S. Banach [3] generalized the concept, and then 
studied it systematically in 1920-1922 along with Hans Hahn and Eduard Elly, and 
gave various results, such as Hahn-Bannach theorem. Since then, many 
generalizations of a metric space model have been defined by many researchers. 
For example, S. Gahler in 1968 introduced the notion of 2-metric space [8, 9]. 
It was the first structure on three arguments before this structure, metric space 
was introduced which was the structure on two arguments.  Approximately over 
two decades the study of 2-metric spaces was studied by mathematicians. In 
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1984, B.C. Dhage [22] an Indian mathematician introduced the new structure on three 
arguments named by D-metric space as the generalized structure of metric space. 
He wrote his PhD thesis on D-metric space. The difference between 2- metric 
space and D-metric space was that 2-metric represents the perimeter of triangle 
while D-metric represents the area of triangle. After this there was a spat of 
papers were published on this newly introduced structure D-metric space by Dhage, 
for details see [10, 11, 12, 13]. The study of this structure also been studied by 
many researchers over two decades. Then an Egyptian mathematician in 2003 
with his Supervisor, Z. Mustafa and B. Sims [14] gave some remarks on the 
structure of D-metric space. They claimed that the structure of D- metric 
space is not the generalization of usual metric space in general. In 2003, after 
giving remarks on D-metric space, Z. Mustafa and B. Sims [15] in 2005 gave the 
more robust structure of generalized metric space named as G-metric space. After 
that, some papers on this new structure appears, see [16, 17, 18]. Subsequently, 
a new structure of metric space called multiplicative metric space was introduced 
by Bashirov et al in2008 [19]. In this structure, they introduced the contraction 
condition for multiplicative metric space which is quite different from the definition 
of contraction condition in usual metric space. They used multiplication in 
triangle inequality and also showed that the distance of two points is greater 
than or equal to 1. The structure of fixed point theory is most important in 
analysis. The first systematic way of finding fixed points of self mappings was 
initiated by S. Bannach in his famous contraction principle [3]. This principle 
is widely used in analysis of operators. Many researchers proved common 
fixed point theorems on many generalizations of fixed point theory. For 
example, A. Alrazi and J. Ahmad [3] proved L-fuzzy mappings and common 
fixed point theorems. A. Azam and I. Beg [4] proved common fixed points of 
fuzzy maps. A. Azam [5] also proved fuzzy fixed point of fuzzy mapping by 
taking rational inequality. Ozavasar and Ceikel [19] proved fixed point 
theorems on multiplicative metric space. 

Recently, the structure of multiplicative G-metric spaces is presented by P. 
Nagpal et al. in 2016 [6] and generalized Bannach fixed point theorem in the 
setting of multiplicative G-metric space. They also extended the generalization 
for two maps in the settings of multiplicative G-metric space. And then M. 
Mazhar et al. [7] proved the rational type fixed point theorems on multiplicative 
G-metric spaces, they initially proved the fixed point theorems by taking single 
maps. Later on, they also proved fixed points by taking triplet maps. 

In this paper, we also focus on the fixed point theory of multiplicative G- 
metric spaces, and give some fixed point theorems by taking structure of mul- 
tiplicative G-metric spaces initially we proved fixed point theorem by taking single 
map and later on we extended our idea and we proved some theorems using 
double maps. We also gave robust example to support our theorem. At the end 
of this paper, we also give real life application of Multiplicative G-metric space in 
well known problem of graph theory which is travelling salesman problem. The 
main purpose of this problem is to find the shortest path for salesman who is 
selling his products to different cities and want to cover cities in a less time. We 
use C++ code for finding shortest path and shortest distance of this
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shortest path. Our results are more robust than other methods because other 
methods are time consuming. By using code we can get our required shortest 
path and shortest distance more faster than any other existing method. 

 
2. Preliminaries 

Now we list some definitions, notation and lemmas which are used in the 
next. 

Definition 1. [6] Let X be a non-empty set. A function d : X × X → R+ is 
said to be a multiplicative metric on X if for any x, y, z ∈ X the following 
conditions hold: 

(i) d(x, y) ≥ 1 and d(x, y) = 1 ⇔ x = y; 
(ii) d(x, y) = d(y, x) (Symmetry); 

(iii) d(x, y) ≤ d(x, z)d(z, y) (Triangle inequality). 
The pair (X, d) is called a multiplicative metric space. 

Definition 2. [6] Let X be a non-empty set and let G : X × X × X → R+ be 
a function satisfying the following conditions: 

(i) G(x, y, z) = 1 if and only if x = y = z; 

(ii) 1 < G(x, x, y), ∀x, y ∈ X with x ̸= y; 
(iii) G(x, x, y) ≤ G(x, y, z), ∀x, y, z ∈ X, z ̸= y; 
(iv) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry); 

(v) G(x, y, z) ≤ G(x, a, a)G(a, y, z), ∀x, y, z, a ∈ X (rectangle inequality); 
The pair (X, G) is called a multiplicative G-metric space. 

Here we give two examples for multiplicative G-metric space from [6]. 

Example 1. [6] Let R be the set of all real numbers. Define a function G : 

R × R × R → R+ by 

G(x, y, z) = e|x−y|+|y−z|+|z−x| ∀x, y, z ∈ R. 

Then the pair (R, G) is a multiplicative G-metric space. 

Example 2. [6] Let (X, d) be an usual multiplicative metric space and define 

G : X × X × X → R+ by 

G(x, y, z) = d(x, y)d(y, z)d(x, z), for all x, y, z ∈ X. 

Then (X, G) is a multiplicative G-metric space. 

For a multiplicative G-metric space, there are some fundamental and impor- 
tant inequalities as below. 
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Proposition 1. [6] Let (X, G) be a multiplicative G-metric space. Then for 

any x, y, z ∈ X and a ∈ X, the following conditions hold: 
(i) G(x, y, z) ≤ G(x, x, y)G(x, x, z); 
(ii) G(x, x, y) ≤ 2G(y, x, x); 
(iii) G(x, y, z) ≤ G(x, a, z)G(a, y, z); 
(iv) G(x, y, z) ≤ 2 {G(x, y, a)G(x, a, z)G(a, y, z)}; 

(v) G(x, y, z) ≤ G(x, a, a)G(y, a, a)G(z, a, a). 

Definition 3. [6] Let (X, G) be a multiplicative G-metric space and {xn} be a 
sequence of points of X. The sequence {xn} is said to be multiplicative G- 
convergent to x if 

lim 
n, m→∞ 

G(xn, xm, x) → 1, 

that is, for every ϵ > 1, there exist a number n0 ∈ N such that 

G(xn, xm, x) < ϵ. 

Definition 4. [6] Let (X, G) be a multiplicative G-metric space. A sequence 

{xn} is called multiplicative G-Cauchy if for a given ϵ > 1, there exist n0 ∈ N 

such that for all m, n, l ≥ n0, 

G(xm,xn, xl) ≤ ϵ, 

that is, if 

 

for all m, n ≥ n0. 

 

G(xm, xn, xl) → 1 as n, m, l → ∞ 

′ ′ 

Definition 5. [6] Let (X, G) and (X , G ) be two multiplicative G-metric spaces 
′ ′ 

and f : (X, G ) → (X , G ) be a function. Then f is said to be a multiplicative 
G-continuous at a point a ∈ X if for any ϵ > 1, there exist δ > 1 such that 

′ 

G(a, x, y) < δ implies G (fa, fx, fy) < ϵ, for x, y ∈ X. Furthermore, a function 
f is said to be multiplicative G-continuous on x if and only if it is multiplicative 

G-continuous at all a ∈ X. 

Definition 6. [6] A multiplicative G-metric space (X, G) is said to be mul- 
tiplicative G-complete if every multiplicative G-Cauchy sequence in (X, G) is 
multiplicative G-convergent in (X, G). 

Definition 7. [6] Let (X, G) be a multiplicative G-metric space, any x ∈ X 
and ϵ > 1. A set 

Bϵ(x0) = {y ∈ X : G(x0,y, y) < ϵ} 

is called a multiplicative G−open ball of radius ϵ and with center x0. Similarly, 
the set   

Bϵ(x0) = {y ∈ X : G(x0, y, y) ≤ ϵ} 

is called a multiplicative G-closed ball. 

Lemma 1. [6] A multiplicative G-Cauchy sequence is multiplicative G-bounded. 

file:///F:/256-New/Paper-AJ/Published%20data/Published%20-%202025/8-2/867-fees/www.iarjournals.com
file:///F:/256-New/Paper-AJ/Published%20data/Published%20-%202024/7-5/820-fees/www.iarjournals.com


American Journal of Sciences and Engineering Research www.iarjournals.com 

 

5 www.iarjournals.com 
 

0 0 0 0 

. 

Proof. Let (X, G) be a multiplicative G-metric space and {xn} be a multiplica- 
tive G-Cauchy sequence in it. From Definition 4, it implies that for ϵ = 2 > 1 

there exists a natural number n0 such that G(xn, xm, xl) < 2 for all m, n ≥ n0. 
Hence, if we set 

M = max{2, G(x1, xn0 , xn0 ), . . . , G(xn0 −1, xn0 , xn0 )}, 

then it is clear that 

G(xn, xn0 , xn0 ) < M, for all n ∈ N. 

Thus we have 

G(xn, xm, xm) ≤ G(xn, xn , xn )G(xm, xn , xn ) < M 2, for all m, n ∈ N. 

This implies that the sequence {xn} is multiplicative G-bounded. 

Definition 8. [6] Let (X, G) be a multiplicative G-metric space. A mapping f 

: X → X is said to be a multiplicative G-contraction if there exist λ ∈ [0, 1) 
such that 

G(fx, fy, fz) ≤ G(x, y, z)λ, ∀ x, y, z ∈ X. 

Definition 9. [7] Let f : X → X be a mapping. The point x ∈ X is called a 
fixed point if f (x) = x. 

 
3. Main results 

In this section, we establish fixed point theorems by taking the contraction 
conditions of Multiplicative G-Metric spaces with single maps, and extended 
this to double mapping in the setting of multiplicative G-Metric Spaces. 

Theorem 1. Let (X, G) be a complete multiplicative G-metric space and f : 

X → X be a contraction mapping. Then f has a unique fixed point if 

G(fx, fy, fz) ≤ (G(x, y, z))λ, for all x, y, z ∈ X and λ ∈ [0, 1). 

Proof. Let x0 be any arbitrary point of X and define the sequence {xn} in X 
by xn+1 = f (xn), n = 0, 1, 2, . . . . 

Assume that xn ̸= xn+1, from xn+1 = f (xn) we have 

G(xn, xn+1, xn+1)  =  G(fxn−1, fxn, fxn) 

≤  (G(xn−1, xn, xn))λ 

=  (G(fxn−2, fxn−1, fxn−1))λ 

≤  (G(xn−2, xn−1, xn−1))λ
2 

. 

≤  (G(x0, x1, x1))λ
n 

. 
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0 1 1 

0 1 1 0 1 1 0 1 1 

n n+1 n+1 0 1 1 

λ ( ) 

n−1 n 

By using multiplicative triangle inequality, we have 

G(xn, xm, xm)  ≤  (G(xn, xn+1, xn+1))λ(G(xn+1, xn+2, xn+2))λ... 

(G(xm−1, xm, xm))λ 

≤  (G(x , x , x ))λ
n 

(G(x , x , x ))λ
n+1 

(G(x , x , x ))λ
m−1 

=  (G(x , x , x ))λ
n+λn+1+...+λm−1 

=  (G(x , x , x ))λn(1+λ+λ2+...+λm−n−1) 
0 1 1 

λn
, 

1−λn−m
  

=  (G(x0, x1, x1)) 1−λ . 

As λ < 1 and m, n → ∞, so 1 − λn−m < 1 and 

G(x , x , x ) ≤ (G(x , x , x ))λ
n 

. 

This implies G(xn, xm, xm) → 1 as m, n → ∞. i.e., lim 
m,n→∞ 

 
 
 

 
G(xn, xm, xm) = 1, 

and thus lim 
m,n→∞ 

(G(X0, X1, X1)) 
n 1−λn−m 

1−λ = 1. So the Sequence {xn} is a 

Cauchy Sequence. 
 

Existence of the fixed point: By the completeness of G, there exist a 

point u ∈ X such that {xn} is a multiplicative G-convergent to u. Since 

G(fxn, fu, fu)  ≤  G(xn−1, u, u) 

and x → u as n → ∞, then G(x , fu, fu) ≤ (G(u, u, u))λn 

. Hence f (u) = u, 
that is, u is a fixed point. 

Uniqueness of the fixed point: Suppose that v is another fixed point of 
f , from f (v) = v we have 

G(u, v, v)  =  G(fu, fv, fv) ≤ (G(u, v, v))λ. 

This shows that v = u. The proof is completed. 

Next we give an example to show Theorem 1. 

Example 3. Let R be the set of all real numbers. Consider the function 

G(x, y, z) = e|x−y|+|y−z|+|z−x| ∀x, y, z ∈ R 

in Example 1. Let f : X → X be defined by 

G(fx, fy, fz) ≤ (G(x, y, z))λ, for all x, y, z ∈ X. 

Then, f has a unique fixed point by using theorem 1. 

Corollary 1. Let (X, G) be a complete multiplicative G-metric space and f : 

X → X be a contraction map. Then f has a fixed point if 
1 

G(fx, fy, fz) ≤ (G(x, y, z)) 2 for all x, y, z ∈ X and λ ∈ [0, 1/2), (1) 
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2 

2 

2 

2 

2 

2 

Example 4. Let X = 0, 1 , 1, Define, G: X × X × X → R by G(0, 1, 1) = 2 = 
G(1, 0, 0) 
G(0, 1 , 1 ) = 1 = G( 1 , 0, 0) 

  

1 
2 2 

2 
1 1 

G( 2 , 1, 1) = 3 = G(1, 2 , 2 ) 
G(0, 1 , 1) = 3 

2 2 

G(x, x, x) = 1forallx ∈ X 
Let f : X → X be defined by 
f (0) = 0, f ( 1 ) = 1 , f (1) = 0 

1 
2 

1  
2 

1 1 
G(f (0), f ( 2 , f 2 ) = G(0, 2 , 2 ) = 1 
G(f (0), f (1), f (1)) = G(0, 0, 0) = 1 
G(f ( 1 , f (1), f (1)) = G( 1 , 0, 0) = 1 

2 
1 

2  
1 G(f (0), f ( 2 ), f (1)) = G(0, 2 , 0) = 1 

Now, 

 
1 = G(f (0), f ( 

Applying eq. (2) in eq. (1), we get 
= G(f (0), f ( 1 ), f ( 1 )) ≤ G(0, 1 , 1 ) 

1 

    

 

 
1 
), f ( 

2 

 

 
1 1 
)) = G(0, , 

2 2 

 

 
1 
) (2) 

2 

2 2 2 2 
1 = G(f (0), f ( 1 ), f ( 1 )) ≤ (1) 

1 

2 2 

1 = 1 
Now, 

1 = G(f (0), f (1), f (1) = G(0, 0, 0) (3) 

Applying Eq. (3) in Eq. (1), we get, 
1 

1 = G(f (0), f (1), f (1) ≤ G(0, 0, 0) 2 
1 

1 = G(f (0), f (1), f (1) ≤ (1) 2 

1 = 1 
Again, consider, 

 
1 = G(f ( 

1 
), f (1), f (1)) = G( 

2 

1 
, 0, 0) (4) 

2 

Applying Eq. (4) in Eq. (1), we get 

1 = G(f ( 1 ), f (1), f (1)) ≤ G( 1 , 0, 0) 
1 

2 2 
1 = G(f ( 1 ), f (1), f (1)) ≤ (1) 

1 

2 

1 = 1 
So, f has two fixed point 0, 1 

 
Corollary 2. Let (X, G) be a complete multiplicative G-metric space and f : 

X → X be a contraction map. Then f has a unique fixed point if 

— 

G(fx, fy, fz) ≤ (G(x, y, z))λ for all x, y, z ∈ B(xo, r) and λ ∈ [0, 1/2), 

and 

G(x0, f (x0), f (x0)) ≤ r1−λ. 
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0 1 1 

2n−1 2n 2n 

0 1 1 

0 1 1 

0 1 1 

0 1 1 

0 1 1 0 1 1 

n m m 0 1 1 

Theorem 2. Let f and g be two maps on a complete multiplicative G-metric 

space X, f, g : X → X and x0 be any arbitrary point in X. Suppose that there 
exists λ ∈ [0, 1) such that 

G(fx, gy, gy) ≤ (G(x, y, y))λ, for any x, y ∈ X. 

Then there exist a unique common fixed point of f and g in X. 

 

Proof. Let x0 be any given point in X. Define a sequence {xn} in X such that 

x2n+1 = f (x2n) and x2n+2 = g(x2n+1), 

Now, 

G(x2n+1, x2n+2, x2n+2)  =  G(f (x2n), g(X2n+1), g(X2n+1)) 

≤  G(x2n, x2n+1, x2n+1)λ 

≤  G(f (x2n−1), g(x2n), g(x2n))λ 

≤ G(x , x  , x  )λ
2 

. 

≤  G(x , x , x )λ
n+1 

. 

By using triangle inequality, we have 

G(xn, xm, xm)  ≤  (G(xn, xn+1, xn+1)).(G(xn+1, xn+2, xn+2))... 

(G(xm−1, xm, xm)) 

≤ (G(fx , gx , gx ))λ
n 

.(G(fx , gx , gx ))λ
n+1 

... 

(G(fx , gx , gx ))λ
m−1 

≤  (G(x , x , x ))λ
n+λn+1+...+λm−1 

=  (G(x , x , x ))λ
n+λn+1+...+λm−1 

≤  (G(x , x , x ))λn(1+λ+λ2+...+λm−n−1) 

λn( 1−λ
n−m 

) 
≤  (G(x0, x1, x1)) 1−λ . 

As λ < 1 and m, n → ∞, so 1 − λn−m < 1, then 

G(x , x  , x  ) ≤ (G(x , x , x ))λ
n 

. 

This implies that G(xn, xm, xm) → 1 as m, n → ∞, i.e., limm,n→∞ G(xn, xm, xm) = 
λn( 1−λ

m−n 
) 

1.  Since limm,n→∞(G(xn, xm, xm)) 
Cauchy sequence. 

1−λ = 1, the sequence {xn} is a 

Existence of the fixed point: By the completeness of X, there is a u ∈ X 
such that limm,n→∞ xn = u. So 

G(xn, g(u), g(u)) = G(f (xn−1), g(u), g(u)) ≤ G(xn−1, u, u)λ. 
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2 

1−λ 

As u → ∞, So xn−1 → u, then G(xn, g(u), g(u)) = G(u, u, u)λ. Thus f and g 
have a common fixed point u. 

Uniqueness of the fixed point: Suppose that z is another fixed point 
such that 

G(u, z, z) = G(fu, gz, gz) ≤ G(u, z, z)λ, 

which implies that u = z. So f and g have a common fixed point u. The proof 
is completed. 

Corollary 3. Let f and g be two maps on a complete multiplicative G-metric 

space X, f, g : X → X and x0 be any arbitrary point in X. Suppose that 
∃λ ∈ [0, 1) such that 

 

 
and 

— 

G(fx, gy, gy) ≤ (G(x, y, y))λ, for any x, y ∈ B(xo, r), 

 

G(x0, f (x0), f (x0)) ≤ r1−λ, 

then there exist a unique common fixed point of f and g in X. 

Theorem 3. Let (X, G) be a multiplicative G-metric space. Suppose that the 

mapping f : X → X satisfies the contraction condition 

G(fx, fy, fy) ≤ (G(fx, x, x)G(fy, y, y))λ 

for all X, y ∈ X where λ ∈ [0, 1 ) is a constant. Then f has a unique fixed point 
in X, and for any x0 ∈ X iterative sequence (fnx) converges to the fixed point. 

Proof. Let x0 ba any given point in X. Define an iterative sequence {xn} in X 

x1 = f (x0), 

x2 =  f (x1) = f (f (x0)) = f 2(x0), 

. 

xn+1 =  fn(x0), n = 1, 2, .... 

Thus we have 

G(xn, xn+1, xn+1)  =  G(fxn−1, fxn, fxn) 

≤  (G(fxn−1, xn−1, xn−1)G(fxn, xn, xn))λ 

=  (G(xn, xn−1, xn−1)G(xn+1, xn, xn))λ . 

As 
  λ  

G(xn+1, xn, xn)  ≤  {G(xn, xn−1, xn−1)} 1−λ 

=  {G(xn, xn−1, xn−1)}h, 

where h =  λ  , we have for n > m, 

G(xn, xm, xm)  ≤  G(xn, xn−1, xn−1)G(xn−1, xn−2, xn−2) · · · G(xm+1, xm, xm) 
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1 0 0 

1 0 0 1 0 0 1 0 0 

2 

2 

≤ G(x , x , x )h
n−1 

G(x , x , x )h
n−2 

· · · G(x , x , x )h
m 

≤  G(x , x , x )hn−1+hn−2+...+hm 

 hm 

≤  G(x1, x0, x0) 1−h . 

This implies that G(xn, xm, xm) → 1 as n, m → ∞, i.e., limm,n→∞ G(xn, xm, xm) = 
 hm 

1.  Since limn,m→∞(G(x0, x1, x1)) 1−h  = 1, the sequence {xn} is Cauchy se- 
quence. 

Existence of the fixed point: By the completeness of X, there is a u ∈ X 

such that xn → u (n → ∞). Since 

G(fu, u, u)  ≤  (G(fxn, fu, fu)G(fun, u, u))λ 

≤  (G(fxn, xn, xn)G(fu, u, u))λ G(xn+1, u, u), 

we have 

G(fu, u, u) ≤ {G(fxn, xn, Xn)λ 

 
  1  

G(xn+1, u, u)} 1−λ → 1 (n → ∞). 

Hence 
G(fu, u, u) = 1. 

This implies that fu = u, and thus u is a fixed point of f. 
Uniqueness of the fixed point: Suppose that v is another fixed point 

such that 

G(u, v, v) = G(fu, fv, fv) ≤ {G(fu, u, u).G(fv, v, v)}λ 

which implies that u = v, and thus the fixed point is unique. The proof is 
completed. 

Corollary 4. Let (X, G) be a multiplicative G-metric space. Suppose that the 

mapping f : X → X satisfies the contraction condition 

— 

G(fx, fy, fy) ≤ {G(fx, x, x).G(fy, y, y)}λ, for all x, y ∈ B(x0, r), 

and 

G(x0, f (x0), f (x0)) ≤ r1−λ, 

where λ ∈ [0, 1 ) is a constant. Then f has a unique fixed point in X and for 
any x ∈ X iterative sequence (fnx) converges to the fixed point. 

Theorem 4. Let (X, G) be a multiplicative G-metric space. Suppose that the 

mapping f : X → X satisfies the contraction condition 

G(fx, fy, fy) ≤ (G(fx, y, y)G(fy, x, x))λ 

for all x, y ∈ X where λ ∈ [0, 1 ) is a constant. Then f has a unique fixed point 
in X, and for any x ∈ X iterative sequence (fnx) converges to the fixed point. 
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1−λ 

1 0 0 

1 0 0 1 0 0 1 0 0 

Proof. Let x0 ba any given point in X. Define an iterative sequence {xn} in X 
such that 

x1 =  f (x0), 

x2 =  f (x1) = f (f (x0)) = f 2(x0), 

. 

xn+1 =  fn(x0), n = 1, 2, .... 

Thus we have 

G(xn, xn+1, xn+1)  =  G(fxn−1, fxn, fxn) 

≤  {G(fxn−1, xn, xn).G(fxn, xn−1, xn−1)}λ 

≤  {G(fxn−1, xn, xn).G(fxn, xn−1, xn−1)}λ 

≤  {G(xn, xn, xn).G(xn+1, xn−1, xn−1)}λ. 

As 
 

  λ  

G(xn+1, xn, xn)  ≤  {G(xn, xn−1, xn−1)} 1−λ 

=  {G(xn, xn−1, xn−1)}h 

where h =  λ  , We have for n > m, 

G(xn, xm, xm)  ≤  G(xn, xn−1, xn−1)G(xn−1, xn−2, xn−2) · · · G(xm+1, xm, xm) 

≤ G(x , x , x )h
n−1 

G(x , x , x )h
n−2 

· · · G(x , x , x )h
m 

≤  G(x , x , x )hn−1+hn−2+...+hm 

 hm 

≤  G(x1, x0, x0) 1−h . 

This implies that G(xn, xm, xm) → 1, as n, m → ∞, i.e., limm,n→∞ G(xn, xm, xm) = 
1, when m, n → ∞. Since 

lim 
n,m→∞ 

 
 hm 

(G(x0, x1, x1)) 1−h = 1, 

So the sequence{xn} is a Cauchy sequence. 
Existence of the fixed point: By the completeness of X, there is a z ∈ X 

such that xn → z (n → ∞). Since 

G(fz, z, z)  ≤  G(fxn, fz, fz)G(fxn, z, z) 

≤  (G(fz, xn, xn)G(fxn, z, z))λG(xn+1, z, z) 

≤  (G(fz, z, z).G(xn, z, z)G(xn+1, z, z))λG(xn+1, z, z), 

we have 

G(fz, z, z) ≤ {G(xn+1, z, z)G(xn, z, z)}λ 

 
  1  

G(xn+1, z, z) 1−λ → 1, (n → ∞) 
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2 

0 1 1 

2n−1 2n 2n 

0 1 1 

0 1 1 

0 1 1 0 1 1 0 1 1 

Hence 
G(fz, z, z) = 1. 

This implies that fz = z, and thus z is a fixed point of f. 
Uniqueness of the fixed point: Suppose that z is another fixed point 

such that 

G(u, z, z) = G(fu, fz, fz) ≤ (G(fu, z, z)G(fz, u, u))λ 

which implies that u = z, and thus the fixed point is unique. The proof is 
completed. 

Corollary 5. Let (X, G) be a multiplicative G-metric space. Suppose that the 

mapping f : X → X satisfies the contraction condition 

— 

G(fx, fy, fy) ≤ (G(fx, y, y)G(fy, x, x))λ, for all x, y ∈ B(Xo, r), 

and 

G(x0, f (x0), f (x0)) ≤ r1−λ, 

where λ ∈ [0, 1 ) is a constant. Then f has a unique fixed point in X, and for 
any x ∈ X iterative sequence (fnx) converges to the fixed point. 

Theorem 5. Let (X, G) be a complete multiplicative G-metric space and f, g : 

X → X a contractive mapping. Then f and g have a common fixed point if 

G(fx, gy, gz) ≤ (G(x, y, z))λ for all x, y, z ∈ X and λ ∈ [0, 1/2). 

Proof. Let x0 be any given point in X. Define an iterative sequence {xn} in X 
such that x2n+1 = f (x2n) and x2n+2 = g(x2n+1). Now, 

G(x2n+1, x2n+2, x2n+2)  =  G(f (x2n), g(x2n+1), g(x2n+1))λ 

≤  G(x2n, x2n+1, x2n+1)λ 

≤  G(f (x2n−1), g(x2n), g(x2n))λ 

≤ G(x , x  , x  )λ
2 

. 

≤ G(x , x , x )λ
n+1 

By using triangle inequality, we have 

G(xn, xm, xm)  ≤  (G(xn, xn+1, xn+1))(G(xn+1, xn+2, xn+2)) · · · (G(xm−1, xm, xm)) 

≤ (G(x , x , x ))λ
n 

(G(x , x , x ))λ
n+1 

· · · (G(x , x , x ))λ
m−1 

≤ (G(x , x , x ))λn+n+1+...+m−1 

≤  (G(x , x , x ))λn(1+λ+λ2+...+λm−n−1) 

λn( 1−λ
n−m 

) 
≤  (G(x0, x1, x1)) 1−λ . 
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n m m 0 1 1 As λ < 1 and m, n → ∞, so 1−λn−m < 1, then G(x , x , x ) ≤ G(x , x , x )λn 

. 
This implies that G(xn, xm, xm) → 1 as n, m → ∞, i.e., limm,n→∞ G(xn, xm, xm) = 
1. Since, 

λn( 1−λ
m−n 

) 
lim 

n,m→∞ 
(G(x0, x1, x1)) 1−λ = 1, 

the sequence{xn} is a Cauchy sequence. 

Existence of the fixed point: By the completeness of X, there is a u ∈ X 
such that limn→∞ xn = u. So 

G(xn, g(u), g(u)) = G(f (xn−1), g(u), g(u)) ≤ G(xn−1, u, u)λ 

As n → ∞, so xn−1 → u, then 

G(xn, g(u), g(u)) = G(u, u, u)λ. 

Thus f and g have a common fixed point u. 
Uniqueness of the fixed point: Suppose that z is another fixed point 

such that 

G(u, z, z) = G(fu, gz, gz) ≤ G(u, z, z)λ 

which implies that u = z, and thus the fixed point is unique. The proof is 
completed. 

Corollary 6. Let (X, G) be a complete multiplicative G-metric space and f, g : 

X → X be a contractive mapping. Then f and g have a common fixed point if 

— 

G(fx, gy, gz) ≤ (G(x, y, z))λ for all x, y, z ∈ B(x0, r), 
 

and 

 

where λ ∈ [0, 1/2). 

 

G(x0, f (x0), f (x0)) ≤ r1−λ, 

Theorem 6. Let (X, G) be a complete multiplicative G-metric space and f, g : 

X → X be a contractive mapping. Then f and g have a common fixed point if 

G(fx, gy, gy) ≤ (G(x, y, y))λ, for all x, y ∈ X and λ ∈ [0, 1/2). 

 

Proof. Let x0 be any given point in X. Define a sequence {xn} in X such that 

x2n+1 = f (x2n) and x2n+2 = g(x2n+1). 

Now 

G(x2n+1, x2n+2, x2n+2)  =  G(f (x2n), g(x2n+1), g(x2n+1)) 

≤  G(x2n, x2n+1, x2n+1)λ 

≤  G(f (x2n−1), g(x2n), g(x2n))λ 

file:///F:/256-New/Paper-AJ/Published%20data/Published%20-%202025/8-2/867-fees/www.iarjournals.com
file:///F:/256-New/Paper-AJ/Published%20data/Published%20-%202024/7-5/820-fees/www.iarjournals.com


American Journal of Sciences and Engineering Research www.iarjournals.com 

 

14 www.iarjournals.com 
 

0 1 1 

2n−1 2n 2n 

0 1 1 

0 1 1 

0 1 1 0 1 1 0 1 1 

n m m 0 1 1 

≤ G(x , x  , x  )λ
2 

. 

≤ G(x , x , x )λ
n+1 

By using triangle inequality, we have 

G(xn, xm, xm)  ≤  (G(xn, xn+1, xn+1)).(G(xn+1, xn+2, xn+2))...(G(xm−1, xm, xm)) 

≤  (G(x , x , x ))λ
n 

.(G(x , x , x ))λ
n+1 

...(G(x , x , x ))λ
m−1 

≤  (G(x , x , x ))λn+λn+1+λn+2+...+λm−1 

≤  (G(x , x , x ))λn(1+λ+λ2+...+λm−n−1) 

λn( 1−λ
n−m 

) 
≤  (G(x0, x1, x1)) 1−λ . 

As λ < 1 and m, n → ∞, so 1 − λn−m < 1, then 

G(x , x  , x  ) ≤ G(x , x , x )λ
n 

. 

This implies that G(xn, xm, xm) → 1 as n, m → ∞, i.e., limm,n→∞ G(xn, xm, xm) = 
1. Since 

λn( 1−λ
n−m 

) 
lim 

n,m→∞ 
(G(x0, x1, x1)) 1−λ = 1, 

the sequence{xn} is a Cauchy sequence. 

Existence of the fixed point: By the completeness of X, there is a u ∈ X 
such that limn→∞ xn = u. So 

G(xn, g(u), g(u)) = G(f (xn−1), g(u), g(u)) ≤ G(xn−1, u, u)λ. 

As n → ∞, so xn−1 → u, then 

G(xn, g(u), g(u)) = G(u, u, u)λ. 

Thus f and g have a common fixed point u. 
Uniqueness of the fixed point: Suppose that z is another fixed point 

such that 

G(u, z, z) = G(fu, gz, gz) ≤ G(u, z, z)λ, 

which implies that u = z, and thus the fixed point is unique. The proof is 
completed. 

Corollary 7. Let (X, G) be a complete multiplicative G-metric space and f, g : 

X → X be a contractive mapping. Then f and g have a common fixed point if 

— 

G(fx, gy, gy) ≤ (G(x, y, y))λ, for all x, y ∈ B(X0, r), 

and 

 

where λ ∈ [0, 1/2). 

 

G(x0, f (x0), f (x0)) ≤ r1−λ, 
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2 

1−λ 

1 0 0 

1 0 0 1 0 0 1 0 0 

Theorem 7. Let (X, G) be a multiplicative G-metric space. Suppose that the 

mapping f, g : X → X satisfies the contraction condition 

G(fx, gy, gy) ≤ (G(fx, x, x)G(gy, y, y))λ 

for all x, y ∈ X where λ ∈ [0, 1 ) is a constant. Then f and g has a common 
fixed point in X. 

Proof. Let x0 be any given point in X. Define a sequence {xn} in X such that 

x2n+1 = f (x2n) and x2n+2 = g(x2n+1). 

Thus we have 

G(x2n+1, x2n+2, x2n+2)  =  G(fx2n, gx2n+1, gx2n+1) 

≤  (G(fx2n, x2n, x2n)G(gx2n+1, x2n+1, x2n+1))λ 

=  (G(x2n+1, x2n, x2n)G(x2n+2, x2n+1, x2n+1))λ, 

and 
 

  λ  

G(x2n+1, x2n+2, x2n+2)  ≤  (G(x2n, x2n+1, x2n+1)) 1−λ 

=  {G(x2n, x2n+1, x2n+1)}h, 

where h =  λ  . By using Triangle inequality, we have for n > m, 

 

G(xn, xm, xm)  ≤  G(xn, xn−1, xn−1)G(xn−1, xn−2, xn−2) · · · G(xm−1, xm, xm) 

≤ G(x , x , x )h
n−1 

G(x , x , x )h
n−2 

· · · G(x , x , x )h
m 

≤  G(x , x , x )hn−1+hn−2+...+hm 

 hm 

≤  G(x1, x0, x0) 1−h . 

This implies that 

G(xn, xm, xm) → 1 as n, m → ∞, 

i.e., limm,n→∞ G(xn, xm, xm) = 1. Since 

lim 
n,m→∞ 

 
 hm 

(G(x0, x1, x1)) 1−h = 1, 

the sequence{xn} is a Cauchy sequence. 
Existence of the fixed point: By the completeness of X, there is a z ∈ X 

such that xn → z (n → ∞). Since 

G(fx, gz, gz)  ≤  G(fxn, gz, gz)G(fxn, z, z) 

≤  (G(fxn, xn, xn)G(gz, z, z))λG(xn+1, z, z) 

we have 

G(fz, gz, gz) ≤ (G(fxn, xn, xn)λ 

 
 
 

 
  1  

G(xn+1, z, z)) 1−λ → 1 (n → ∞). 
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2 

Hence G(fz, gz, gz) = 1. Thus f and g have a common fixed point z. 
Uniqueness of the fixed point: Suppose that z is another fixed point 

such that 

G(u, z, z) = G(fu, gz, gz) ≤ {f (fu, u, u).G(gz, z, z)}λ, 

which implies that u = z, and thus the fixed point is unique. The proof is 
completed. 

Corollary 8. Let (X, G) be a multiplicative G-metric space. Suppose that the 

mapping f, g : X → X satisfies the contraction condition 

— 

G(fx, gy, gy) ≤ (G(fx, x, x)G(gy, y, y))λ, for all x, y ∈ B(x0, r) 

and 

G(x0, f (x0), f (x0)) ≤ r1−λ, 

where λ ∈ [0, 1 ) is a constant. Then f and g has a common fixed point in X. 

 
4. Application of Multiplicative G-Metric Space in Travelling Sales- 

man Problem 

Travelling Salesman Problem: This is very well known problem of graph 
theory. In this problem, a person who is selling different goods to different cities. 
He wants to go to all cities at the same day but in a less time by using shortest 
path. Here, we are giving C++ code as an application of multiplicative G-metric 
space by using this code we calculated shortest path for salesman who can visit 
all cities. We are giving this code for 10 cities. To solve the Traveling Salesman 
Problem (TSP) using the multiplicative G-metric space in C++, we need to 
consider a slight modification in the distance calculation compared to the regular 
Euclidean or geometric distance. In a multiplicative G-metric space, the distance 
between two cities is calculated as the product of individual distances along the 
path, each raised to a power G. This code calculates the distance between cities 
based on the multiplicative G-metric space and finds the shortest path using a 
similar approach. 
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Figure 1: Travelling Salesman Problem of 10 Cities 
 

 

#in c lu d e < iostream > 
#in c lu d e <vector  > 
#in c lu d e <algorithm > 
#in c lu d e < lim i t s > 
#in c lu d e <cmath> 

using namespace std ; 
//  C lass  :  M u l t i p l i c a t i v e G−M etric  Space 
// Define the number o f c i t i e s 
const in t n u m b e r c i t i e s = 1 0 ; 

 
// Define the d i s ta n c e matrix ( adjacency  matrix ) 

in t d i s t a n c e s [ n u m b e r c i t i e s ] [ n u m b e r c i t i e s ] = { 
{ 0 , 10 , INT MAX, INT MAX, 25 , INT MAX, INT MAX, INT MAX, 
INT MAX, INT MAX} , 
{ 10 , 0 , 35 , 30 , INT MAX, INT MAX, INT MAX, INT MAX, 
INT MAX, INT MAX} , 
{INT MAX, 35 , 0 , 20 , INT MAX, INT MAX, INT MAX, INT MAX, 
INT MAX, INT MAX} , 
{INT MAX, 30 , 20 , 0 , INT MAX, INT MAX, INT MAX, INT MAX, 
INT MAX, INT MAX} , 
{ 25 , INT MAX, INT MAX, INT MAX, 0 , 15 , INT MAX, INT MAX, 
INT MAX, INT MAX} , 
{INT MAX, INT MAX, INT MAX, INT MAX, 15 , 0 , INT MAX, 
INT MAX, INT MAX, INT MAX} , 
{INT MAX, INT MAX, INT MAX, INT MAX, INT MAX, INT MAX, 
0 , INT MAX, INT MAX, 15 } , 
{INT MAX, INT MAX, INT MAX, INT MAX, INT MAX, INT MAX, 
INT MAX, 0 , INT MAX, INT MAX} , 

file:///F:/256-New/Paper-AJ/Published%20data/Published%20-%202025/8-2/867-fees/www.iarjournals.com
file:///F:/256-New/Paper-AJ/Published%20data/Published%20-%202024/7-5/820-fees/www.iarjournals.com


American Journal of Sciences and Engineering Research www.iarjournals.com 

 

18 www.iarjournals.com 
 

{INT MAX, INT MAX, INT MAX, INT MAX, INT MAX, INT MAX, 
INT MAX, INT MAX, 0 , INT MAX} , 

{INT MAX, INT MAX, INT MAX, INT MAX, INT MAX, INT MAX, 
15 , INT MAX, INT MAX, 0} 

}; 

//  Define  the  power  f o r  the G−m etric 
const  double G = 1 . 5 ;  // You can  ad jus t  t h i s  value  as  needed 

// Function to c a l c u l a t e the d i s ta n c e between two c i t i e s 
in the m u l t i p l i c a t i v e G−m etric space 

double d i s ta n c e  b e tw e e n ( in t  c i ty 1 ,  in t  c i ty 2 ) { 
// I f  e i t h e r  c i t y  i s unreachable , re turn INT MAX 

i f ( d i s t a n c e s [ c i ty 1 ] [ c i t y 2 ] == INT MAX | | 
d i s t a n c e s [ c i ty 2 ] [ c i t y 1 ] == INT MAX) 

return INT MAX; 

// Cal culate   d i s ta n c e  using   the  m u l t i p l i c a t i v e G−m etric  formula 
return pow( d i s t a n c e s [ c i t y 1 ] [ c i ty 2 ]  ∗  d i s t a n c e s [ c i ty 2 ] [ c i t y 1 ] , G) ; 

} 

// Function to c a l c u l a t e the t o t a l d i s ta n c e o f a path 

double t o t a l  d i s t a n c e ( const vector <int >& path ) { 
double  t o t a l = 1 ;  //  I n i t i a l i z e  t o t a l  d i s ta n c e 

f o r  ( s i z e t  i = 0 ;  i < path . s i z e () − 1 ; ++i )  { 
t o t a l ∗= d i s ta n c e  b e tw e e n ( path [ i ] ,  path [ i + 1 ] ) ; 

} 
// Return  to  the  s t a r t i n g  c i t y 
t o t a l ∗= d i s ta n c e  b e tw e e n ( path . back ( ) ,  path . f r o n t ( ) ) ; 

return  t o t a l ; 

} 

in t main () { 
// Vector to  s t o r e  the  order  o f  c i t i e s  v i s i t e d 
vector <int > path ( n u m b e r c i t i e s ) ; 

f o r ( in t  i = 0 ;  i < n u m b e r c i t i e s ; ++i ) { 
path [ i ] = i ; 

} 

//  Find  the  s h o r t e s t  path 
double m in i   d i s t a n c e = n um e r ic l im i ts <double > : : max ( ) ; 
vector  <int > s ho rt path ; 

do { 
double c u r r e n t d i s t a n c e = t o t a l   d i s t a n c e ( path ) ; 
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i f ( c u r r e n t d i s t a n c e < m in i  d i s t a n c e ) { 
m in i  d i s t a n c e = c u r r e n t d i s t a n c e ; 
s ho rt path = path ; 

} 

} while ( next permutation ( path . begin () + 1 , path . end ( ) ) ) ; // 
Start  from the second c i t y 

// Output the s h o r t e s t path 
cout << ” Sh o rte s t path : ”;  

f o r  ( in t  c i t y  :  s ho rt path ) { 
cout << c i t y << ”  ”; 

} 
cout << endl ; 
cout << ” Sh o rte s t  d i s ta n c e :  ” << m in i   d i s t a n c e << endl ; 

return  0 ; 

} 

 
5. Conclusion 

We proved some fixed point theorems by taking settings of multiplicative G- 
metric spaces. We also proved theorems by settings of two maps, and also gave 
corollaries of Closed balls in the settings of multiplicative G-metric spaces. Still, 
multiplicative G-metric space has to be explored further with its applications in 
Science and technology. At the end we have given an application of Multiplicative 
G-metric space in travelling salesman problem to find shortest path and shortest 
distance for salesman. By using this code we can find shortest route between any 
number of cities. Our application of multiplicative G-metric space is more robust 
than existing techniques because other methods are time consuming but our 
technique is faster than other existing methods. It looks that the further research 
in this field will open a new gate for researchers. 
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